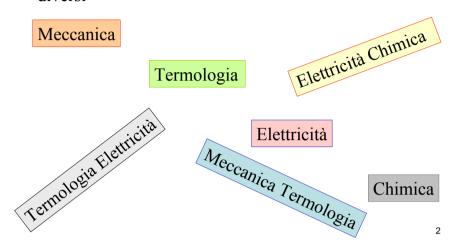
Energia: stato attuale e prospettive future Sezione AIF Bologna, venerdì 18 aprile 2008

Il ruolo dell'energia nella descrizione dei fenomeni naturali: ENERGIA COME PRINCIPIO REGOLATORE una proposta didattica


- 1 Alcuni esperimenti
- 2 Il modello di riferimento
- 3 Rappresentazione grafica
- 4 L'energia scambiata e l'energia immagazzinata
- 5 Discussione di alcuni esempi

Michele D'Anna – Alta Scuola Pedagogica e Liceo cantonale di Locarno

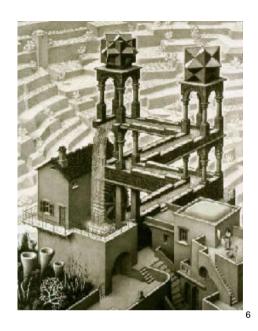
1

1 – Alcuni esperimenti

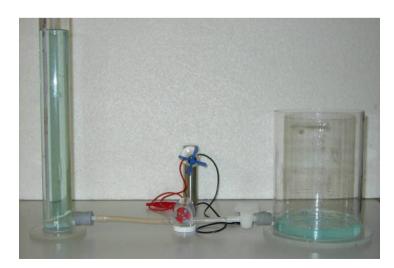
Per iniziare consideriamo alcuni esperimenti in ambiti diversi

Cominciamo con una macchinina a molla e ...

una sua amica


Questo è un mulino per i piccoli ...

... e questo un mulino per i grandi ...



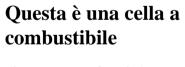
mentre questo è un mulino ... che non c'è!

5

Ecco invece qualcosa che funziona: un mini-mulino che alimenta un motore elettrico

Qui un motore un po' diverso ...

.... e qui una variante moderna


11

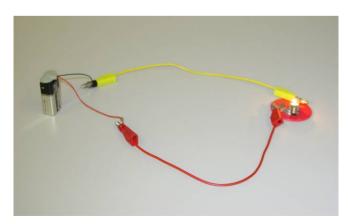
Ecco invece un asciugacapelli

10

(idrogeno / aria)

E questa una pompa per l'aria, ossia un dispositivo che ...

Mentre questo è un alimentatore elettrico, ossia ...



Questo è un apparecchio per l'elettrolisi, ossia

14

Qui una batteria alimenta una lampadina; ossia ...

Alcune domande:

- Quali compiti assolvono i dispositivi mostrati?
 Che cosa hanno in comune le diverse situazioni viste?
- Riscontrate delle affinità anche a livello di linguaggio nella descrizione dei vari dispositivi visti?
- Sapreste individuare delle grandezze che nella descrizione delle varie situazioni svolgono una funzione analoga?

2 - Il modello di riferimento

CONOSCENZE
L'energia:
☐ può essere immagazzinata;
☐ può fluire da un sistema ad un altro;
☐ quando fluisce è sempre accompagnata dal flusso di
un'altra grandezza;
☐ può essere trasferita da un portatore ad un altro;
☐ è soggetta ad una legge di bilancio;
☐ è una grandezza conservata.

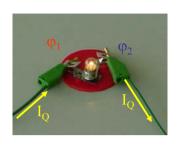
COMPETENZE

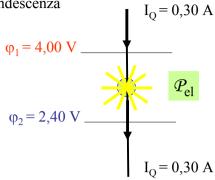
L'allievo deve saper:

- ☐ individuare a livello qualitativo come e dove l'energia è immagazzinata, i flussi energetici e i processi nei quali l'energia viene dissipata;
- ☐ descrivere e prevedere, attraverso bilanci energetici quantitativi, i cambiamenti che avvengono in un sistema;
- ☐ riconoscere il legame tra l'irreversibilità dei fenomeni e la dissipazione dell'energia;
- ☐ utilizzare, in situazioni complesse, l'energia come chiave di lettura per le trasformazioni che avvengono in sistemi aperti, chiusi o isolati.

18

L'energia come principio regolatore

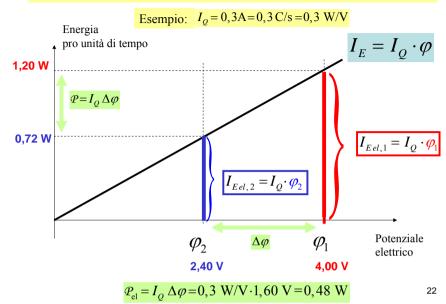

Nei *processi naturali* solitamente sono implicate più correnti: possiamo dire che esse sono tra di loro *accoppiate*. È quindi di grande interesse capire il principio in base al quale sono "regolati" questi accoppiamenti. Come sappiamo, la *contabilità* in questo ambito è svolta dalla grandezza che noi chiamiamo *energia*. Essa ha quindi il ruolo di *principio regolatore*: in una data situazione, l'energia determina i tassi di accoppiamento tra i vari aspetti (meccanici, termici, elettrici, idraulici, chimici, ecc.) coinvolti nel processo considerato.


Per i processi dovuti ad una differenza di potenziale (cioè per i processi di *conduzione*) si trova *sperimentalmente* che la *potenza* \mathcal{P} (ossia la quantità di energia che per unità di tempo viene richiesta o messa a disposizione nel processo) può essere espressa dalla relazione:

$$\mathcal{P} = I_{X} \cdot \Delta \varphi_{X}$$

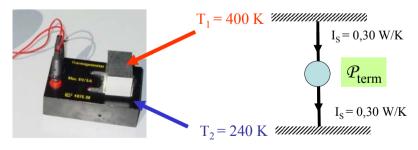
Flusso di energia associato a un dato flusso di carica elettrica

Esempio: lampadina ad incandescenza

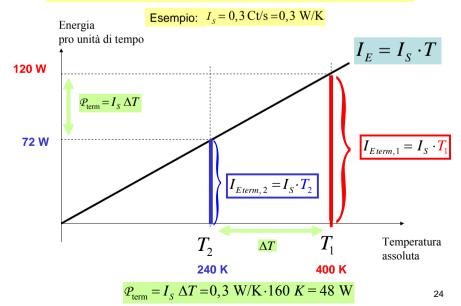


$$I_Q = 0.3 \text{A} = 0.3 \text{ C/s} = 0.3 \text{ W/V}$$

 $\Delta \varphi = \varphi_1 - \varphi_2 = 4.00 \text{ V} - 2.40 \text{ V} = 1.60 \text{ V}$
 $\mathcal{P}_{el} = I_O \Delta \varphi = 0.3 \text{ W/V} \cdot 1.60 \text{ V} = 0.48 \text{ W}$


21

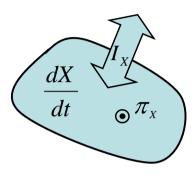
Flusso di energia associato a un dato flusso di carica elettrica


Flusso di energia associato a un dato flusso di entropia

Esempio: macchina termica reversibile

$$I_S = 0.3 \text{ Ct/s} = 0.3 \text{ W/K}$$

 $\Delta T = T_1 - T_2 = 400 \text{ K} - 240 \text{ K} = 160 \text{ K}$
 $\mathcal{P}_{\text{term}} = I_S \Delta T = 0.3 \text{ W/K} \cdot 160 \text{ K} = 48 \text{ W}$


Flusso di energia associato a un dato flusso di entropia

Breve riassunto

Per ogni **grandezza estensiva** è possibile scrivere una *relazione di bilancio* (*istantaneo*)

$$\frac{dX}{dt} = I_X + \pi_X$$

X: misura della grandezza

I_X: misura dell'intensità di corrente

 π_X : misura del tasso di produzione/distruzione

25

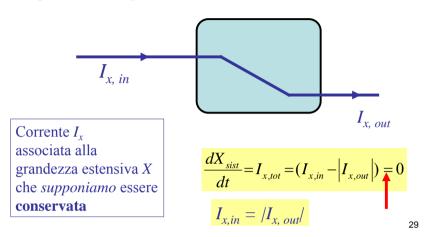
Equazione di bilancio

idraulica
$$dV/dt = I_V$$

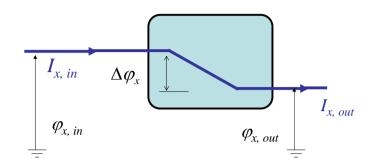
elettricità
$$dQ/dt = I_Q$$

meccanica
$$d\mathbf{p}/dt = \mathbf{F}$$

termologia
$$dS/dt = I_S + \pi_S$$

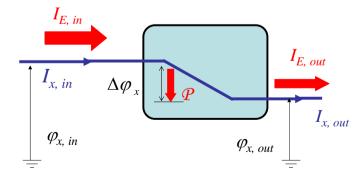

chimica
$$dn/dt = I_n + \pi_n$$

Campo di studio	Grandezza estensiva	Conservata / non conservata	Corrente associata Grandezza intensiva		"Spinta" al trasferi- mento
Idraulica	Volume d'acqua V	conservata	Corrente d'acqua I_V	Pressione P	ΔP
Elettricità	Carica elettrica Q	conservata	Corrente elettrica I_Q	Potenziale elettrico φ	$\Delta \varphi$
Meccanica (traslazioni)	Quantità di moto p _x	conservata	Corrente meccanica (traslazioni) I_{px} (o forza F)	Velocità v _x	Δv_x
Meccanica (rotazioni)	Quantità di moto angolare L _x	conservata	Corrente meccanica (rotazioni) I_{Lx} (o momento della forza M_{mecc})	Velocità angolare ω_x	$\Delta\omega_{_{X}}$
Termologia	Entropia S	non conservata	Corrente d'entropia I_S	Temperatura assoluta T	ΔT
Chimica (trasformazioni della materia)	Quantità di sostanza n	non conservata	Corrente chimica (o di quantità di sostanza) I_n	Potenziale chimico μ	Δμ


Campo di studio	Grandezza estensiva	Grandezza intensiva	Corrente associata	Trasporto di energia	Scambi di energia
Idraulica	Volume d'acqua V	Pressione P	Corrente d'acqua I_V	$I_E = I_V \cdot P$	$\mathbf{P} = I_V \cdot \Delta P$
Elettricità	Carica elettrica <i>Q</i>	Potenziale elettrico φ	Corrente elettrica I_Q	$I_E = I_Q \cdot \varphi$	$\mathbf{P} = I_{Q} \cdot \Delta \varphi$
Meccanica (traslazioni)	Quantità di moto p _x	Velocità v _x	Corrente meccanica (traslazioni) I_{px} (o forza F)	$I_E = I_{px} \cdot v_x$	$\mathbf{P} = I_{px} \cdot \Delta v_x$
Meccanica (rotazioni)	Quantità di moto angolare L_x	Velocità angolare ω_x	Corrente meccanica (rotazioni) I_{Lx} (o momento della forza M_{mecc})	$I_E = I_{Lx} \cdot \omega_x$	$\mathbf{P} = I_{Lx} \cdot \Delta \omega_x$
Termologia	Entropia S	Temperatura assoluta T	Corrente d'entropia I_S	$I_E = I_S \cdot T$	$\mathbf{P} = I_S \cdot \Delta T$
Chimica	Quantità chimica <i>n</i>	Potenziale chimico μ	Corrente chimica I_n rispettivamente tasso di trasformazione π_n	$I_E = I_n \cdot \mu$	$\mathbf{P} = I_n \cdot \Delta \mu$ $\mathbf{P} = \pi_{n(R)} \cdot \Delta \mu$

3 - Rappresentazione grafica del modello

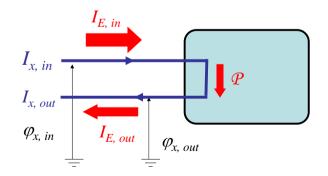
Sistema di cui si vuole rappresentare il comportamento (regime stazionario)



Potenziali:

30

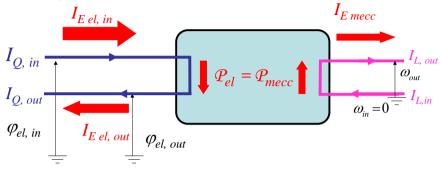
Aspetti energetici (1)



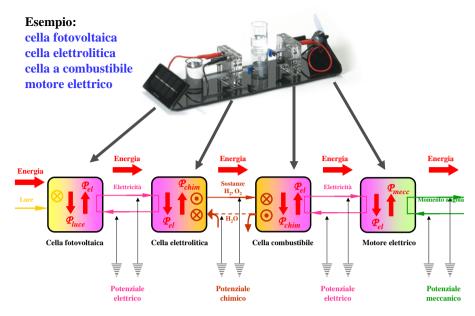
Bilancio per l'energia:
$$\mathcal{P} = I_{\mathcal{E},in} - \left| I_{\mathcal{E},out} \right|$$

$$\mathcal{P} = I_{\mathcal{E}, in} - \left| I_{\mathcal{E}, out} \right|$$

31


Aspetti energetici (2): altro modo di rappresentare

Bilancio per l'energia:
$$\mathcal{P} = I_{\mathcal{E},in} - \left| I_{\mathcal{E},out} \right|$$


Adesso siamo pronti per rappresentare un "processo", ossia una trasformazione in cui l'energia passa da un portatore ad un altro.

Esempio: motore elettrico (ideale)

Bilancio per l'energia:

$$\left|I_{E \, mecc}\right| = \left|I_{E \, el, \, in} - \left|I_{E \, el, out}\right|\right|$$

(Ipotesi: rendimento del 100 %, ossia processi reversibili senza produzione di entropia) ³⁴

4 - L'energia scambiata e l'energia immagazzinata

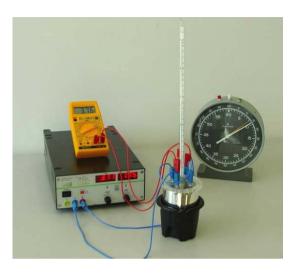
A) Come costruire l'espressione per la potenza?

Attraverso lo studio sperimentale di situazioni in cui un medesimo effetto viene realizzato in modi diversi.

1) Turbina idraulica: l'apparecchiatura

Effetto scelto: stessa luminosità della lampadina (in pratica: stressa tensione ai capi della lampadina) 35

Turbina idraulica: risultati sperimentali


differenza di	tempo di	quantità	intensità	Ι. <u>Δ</u> Ρ
pressione	raccolta	di acqua	corrente	(potenza)
(bar)	(s)	(litri)	(litri/s)	(u.a)
0.66	9.6	2.40	0.25	0.17
0.72	7.4	1.60	0.22	0.16
0.82	7.8	1.40	0.18	0.15
0.92	8.0	1.43	0.18	0.17
1.20	10.9	1.73	0.16	0.19
1.22	14.4	2.15	0.15	0.18

2) Riscaldatore a immersione: l'apparecchiatura

Riscaldatore a immersione: risultati sperimentali

elemento	Intensità corrente I _Q (A)	$\begin{array}{c} \text{Differenza} \\ \text{potenziale} \\ \Delta\phi_{AB}\left(V\right) \end{array}$	I _Q . Δφ _{AB} (A.V)	Aumento temperatura/min ΔT/Δt (°C/min)
	2,60	2,70	7,02	0,46
	1,83	3,81	6,97	0,46
	3,62	1,94	7,02	0,47

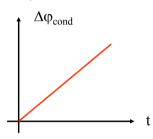
~~

B) Come esprimere l'energia immagazzinata?

Attraverso lo studio di una situazione sperimentale in cui l'energia viene trasferita a poco a poco al "contenitore".

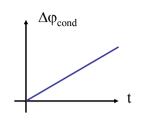
Esempi:

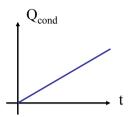
- 1) carica del condensatore
- 2) energia cinetica


B1) Carica del condensatore: l'apparecchiatura

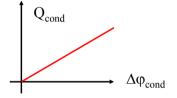
Carica del condensatore: risultati sperimentali

Ai capi del condensatore di capacità C viene creata a poco a poco una differenza di potenziale trasportando carica elettrica da un "polo" all'altro. Questa operazione viene effettuata mantenendo costante l'intensità della corrente ($I_O = 20 \text{ mA}$).


Sperimentalmente si osserva il seguente andamento per la tensione ai capi del condensatore in funzione del tempo:

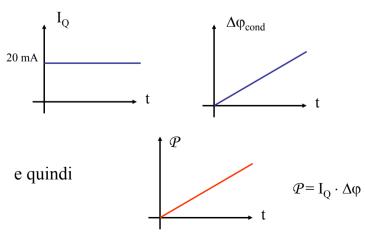


43

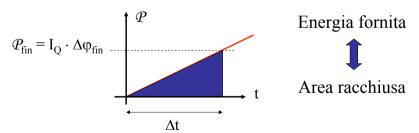

Determinazione della capacità

Nelle condizioni sperimentali scelte abbiamo:

ossia



$$\frac{Q_{cond}}{\Delta \varphi_{cond}} = \text{costante} = C$$


dove C è la capacità del condensatore.

42

A questo punto si può determinare la potenza che la sorgente deve erogare in funzione del tempo:

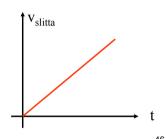
Per l'energia fornita al condensatore e di conseguenza per l'energia immagazzinata nel condensatore si ottiene:

Energia immagazzinata =

$$= \underset{\text{fornita}}{\text{Energia}} = \frac{1}{2} \left(\Delta \varphi_{fin} \cdot I_{Q} \right) \cdot \Delta t = \frac{1}{2} \Delta \varphi_{fin} \cdot \left(I_{Q} \cdot \Delta t \right) = \frac{1}{2} \Delta \varphi_{fin} \cdot Q_{fin} = \frac{1}{2} C \cdot \Delta \varphi_{fin}^{2}$$

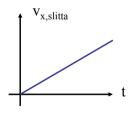
B2) Energia cinetica: l'apparecchiatura

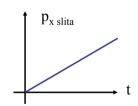
Studio del moto di un corpo sul quale agisce una forza costante (interpretata come un trasferimento di quantità di moto a regime costante)



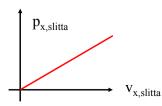
Energia cinetica: risultati sperimentali

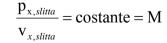
Una slitta viene messa in moto: a poco a poco la sua velocità (relativa al binario a cuscino d'aria) aumenta, grazie al fatto che le viene fornita quantità di moto. Questa operazione viene effettuata a regime stazionario, ossia mantenendo costante l'intensità della forza agente ($F_{est} = I_{px} = 54 \text{ mN}$).


Sperimentalmente si osserva il seguente andamento per la velocità della slitta (rispetto al binario) in funzione del tempo:

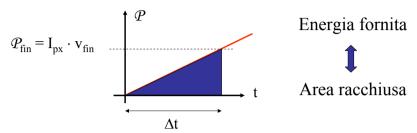


46


Significato della massa inerziale

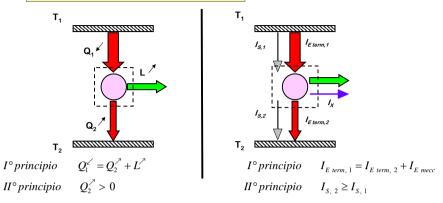

Nelle condizioni sperimentali scelte abbiamo:

ossia



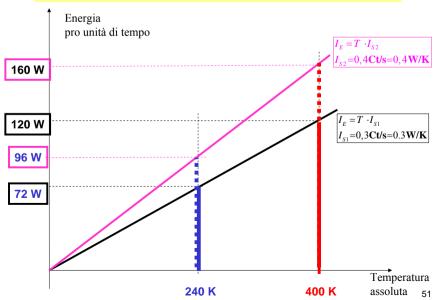
dove M è la massa inerziale, ossia la capacità del corpo ad immagazzinare quantità di moto A questo punto si può determinare la potenza che deve essere fornita alla slitta in funzione del tempo:

Per l'energia fornita alla slitta (lavoro) e di conseguenza per l'energia immagazzinata nella slitta si ottiene:

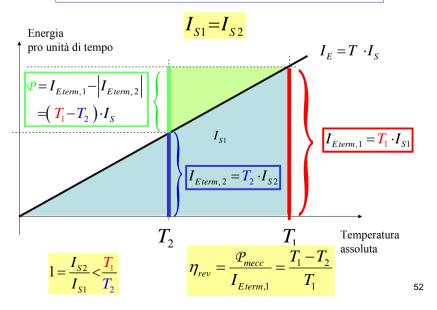

Energia immagazzinata

$$= \begin{array}{ll} \text{Energia} = & \frac{1}{2} \Big(v_{\text{fin}} \cdot I_{\text{px}} \Big) \cdot \Delta t = \frac{1}{2} \, v_{\text{fin}} \cdot \Big(I_{\text{px}} \cdot \Delta t \Big) = \frac{1}{2} \, v_{\text{fin}} \cdot p_{x_{\text{fin}}} = \frac{1}{2} \, M \cdot v_{\text{fin}}^2 \\ \end{array}$$

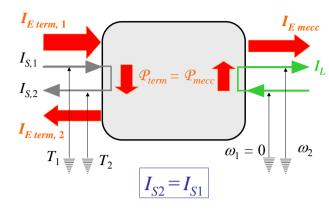
49


5 – Discussione di alcuni esempi

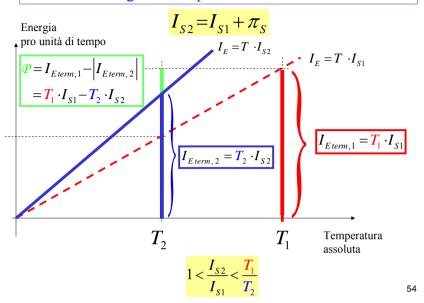
Rendimento di un motore termico



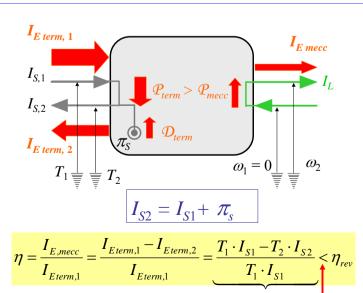
Rappresentazione schematica del funzionamento di una macchina termica: a sinistra sono rappresentati gli scambi energetici con l'esterno (bilancio in forma integrata), a destra sono indicati anche i flussi dei rispettivi portatori (bilancio in forma istantanea).


Flusso di energia associato a un dato flusso di entropia

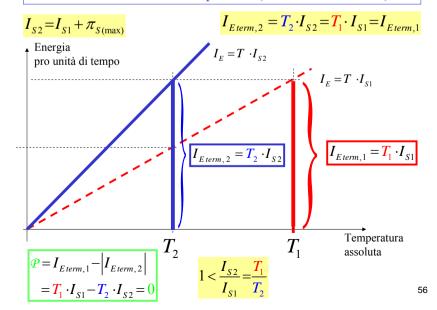
Caso particolare: motore termico reversibile

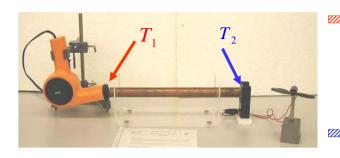


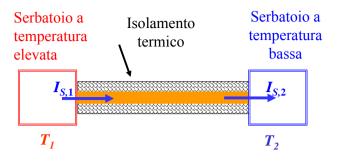
Rendimento di un motore termico reversibile



$$\eta_{rev} = \frac{I_{E,mecc}}{I_{Eterm,1}} = \frac{I_{Eterm,1} - I_{Eterm,2}}{I_{Eterm,1}} = \frac{T_1 \cdot I_{S1} - T_2 \cdot I_{S2}}{T_1 \cdot I_{S1}} = \frac{T_1 - T_2}{T_1}$$
53


Caso generale: processo irreversibile


Rendimento di un motore termico NON reversibile



Conduzione termica e irreversibilità

In questo caso *tutta* l'energia che viene "liberata" dall'entropia $I_{S2} = I_{S1} + \pi_S$ nel passaggio da T₁ a T₂ viene dissipata: in uscita dal sistema è associata all'entropia prodotta nel processo di conduzione.

$$I_{S2} = I_{S1} + \pi_S$$

$$I_{Eterm,2} = T_2 \cdot I_{S2} = T_2 \cdot (I_{S1} + \pi_S) = T_1 \cdot I_{S1} = I_{Eterm,1}$$

$$\pi_S = I_{Eterm} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

57

59

 T_{2}

Per semplicità assumiamo che gli unici scambi di entropia possano avvenire agli estremi della sbarra, ciascuno dei quali è in contatto termico con due serbatoi di temperatura T_1 e T_2 che supponiamo costanti.

Lungo la sbarra di rame viene trasportata entropia: la differenza di temperatura tra i due estremi costituisce la "spinta" a questo trasferimento.

Con il principio della conservazione dell'energia e la relazione generale tra le intensità dei flussi di energia e del suo portatore abbiamo (per uno stato stazionario):

$$I_{Eterm,1} = I_{Eterm,2}$$

$$T_1 \cdot I_{S1} = T_2 \cdot I_{S2}$$

$$I_{Eterm,1} = I_{Eterm,2}$$
$$T_1 \cdot I_{S1} = T_2 \cdot I_{S2}$$

Dato che per ipotesi T_1 è maggiore di T_2 , possiamo concludere che:

$$I_{S2} > I_{S1}$$

vale a dire: l'intensità della corrente d'entropia in uscita è maggiore di quella in entrata.

Ciò viene interpretato dicendo che nel processo di conduzione termica all'interno della sbarra viene prodotta entropia:

$$I_{S2} = I_{S1} + \pi_S$$