system the force on a charge moving with arbitrary velocity
uis given by Lorentz’s force f = eE + (e/c)(u X H). In the
moving system S” the force is given by the same equation,
f' = eE + (e/c)(w X H’). Using the force transformations
derived above, the velocity transformation formulas! and
the proper choice of the arbitrary velocity u, we may readily

Pseudowork-energy principle
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obtain the field transformation equations.3
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In this note, a theorem is presented which relates the
translational energy of the center of mass of an extended
body to the net externally applied force. This theorem at
first glance looks something like the usual work-energy
principle. It, however, can allow one to bypass the dif-
ficulties involved with consideration of internal forces, or
vibrational and rotational kinetic energies. It is especially
helpful as a teaching tool to explain situations in which all
the work on nonrigid and/or rotating objects is done by
internal forces. We call this the pseudowork-energy prin-
ciple; it equates the pseudowork to the change in transla-
tional kinetic energy of the center of mass.

The so-called work-energy principle! (or work-energy
theorem?) states that “the work of the resultant force ex-
erted on a particle equals the change in kinetic energy of
the particle.” (See, e.g., Ref. 1, p. 95 or Ref. 2, p. 142.) This
general principle, a form of the law of conservation of en-
ergy, simplifies some otherwise difficult problems in particle
dynamics in elementary physics courses. When applied to
the dynamics of nonrigid bodies of finite extent, the prin-
ciple shows that (see, e.g., Ref. 1, p. 105)

W=W,+ W= AEy. (1)

The total work W of all forces is the sum of the work W,
done by external forces and the work W; done by internal
forces. The total kinetic energy E; can be regarded as
consisting of two parts—Kkinetic energy due to translation
of the center of mass, and kinetic energy of particles relative

7-11 (a) External forces acting on a man who is pushing against
a wall. The work of these forces is zero. (b) External forces on
an automobile. The work of these forces is zero. In both cases,
the work of the internal force is responsible for the increase in
kinetic energy.

Fig. 1. Reprinted from F. W. Sears and M. W. Zemansky, University
Physics, 4th ed. (Addison-Wesley, Reading, MA, 1970) (with permission
of the publisher).
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to the center of mass. This latter part consists of rotational
and vibrational kinetic energies. (The vibrational kinetic
energy is zero if the body is rigid.)

This combination of internal and external work with
translational, rotational, and vibrational kinetic energies,
makes the work-energy principle difficult for beginning
students to understand and apply. This is particularly true
in cases where although the external forces do no work and
thus do not increase the kinetic energy, they are responsible
for the change in momentum (since internal-forces can not
change momentum). Two such cases are illustrated in Fig.
1.

We prove a theorem below which in fact relates the ex-
ternal forces to the translational kinetic energy, and thus
takes the mystery out of the apparent paradox of forces
which change momentum without changing energy.

It is well known (Ref. 2, p. 189 or Ref. 1, p. 58) that
Newton’s second and third laws of motion together imply
that for an extended object

Fext = Mac,. (2)

We define a quantity which we call the pseudowork on an
object, obtained by taking the scalar product of the resultant
external force with the translation vector (displacement)
of the center of mass of the object.

Wps = Pseudowork = f Fey, - dscm. 3)

Note that the external forces need not be applied to the
center of mass, and the points of application of these ex-
ternal forces need not have the same displacement as the
center of mass; this is not true work in the usual sense of the
word. _

The relation of pseudowork to energy-changes is found
by using the same method as used to prove the work-energy

7-1 Path of a particle in
x the xy-plane.

Fig. 2. Reprinted from F. W. Sears and M. W. Zemansky, University
Physics, 4th ed. (Addison-Wesley, Reading, MA, 1970) (with permission
of the publishers).
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principle (Ref. 1, p. 94). With reference to Fig. 2, Fu
changes only the direction of the velocity, whereas Fj
changes only the magnitude of the velocity. Thus the
pseudowork done in going from initial position / to final
position fis

f i
Pseudowork = f Fidsem = f M <d2;m> dScm
1 1]

= / ﬁm) (%)
Mj: ( dt dscm dsem
f dvem
=M j: Oem <dscm> dsem

cm

13}
=M
Yiem
=L Mo}, —'hMul,. (4)
Hence, we have proved the theorem that

f Fexi - dscm = A(Y5 Mvcz:m)e (5

Uem @Vcm

or

Wps = Pseudowork = A(KE¢m), (5a)

i.e., the pseudowork of the resultant external force exerted
on an object equals the change in kinetic energy of trans-
lation of the center of mass of the object. We call this the-
orem the pseudowork-energy principle.

It is interesting to note that a student who does not un-
derstand the work energy principle too well will often use
pseudowork instead of work for the left-hand side of Eq. (1)
and will neglect the rotational and/or vibrational parts of
the kinetic energy on the right-hand side of Eq. (1), thus
making two compensating errors and inadvertently arriving
at the correct principle of Eq. (5). Surely the pseudowork-
energy principle has also been arrived at correctly many
times in the past by those who did understand both work and
energy. However, we know of no reference to it in the lit-
erature, and it is surely absent in standard elementary
physics texts.

In cases (such as those in Fig. 1) where the external forces
are applied at motionless points, and thus do no true work,
the change in KE,, is only one part of the total work by the
internal forces. Yet, without external forces, the internal

Generalized equipartition
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forces could not change the momentum and thus could not
increase KE.n,. The pseudowork-energy principle shows the
quantitative relation between the external forces and KEcm.
It thus helps clarify the situation in which external forces
increase momentum without doing work. Also, since
pseudowork involves only external forces and the motion
of only one point (the center of mass), it is often much easier
to compute than the real work. (See example in Appendix.)
Thus the pseudowork-energy principle is a useful tool for
students solving problem exercises where the usual work-
energy principle is very difficult to apply because of, e.g.,
complex rotational and/or vibrational motion involving
both external and internal forces. Furthermore, as a
pedagogical tool, the discussion of the pseudowork principle
requires students to take a close second look at the work-
energy principle, and leads to a better understanding
thereof.

APPENDIX

As an example of the use of Eq. (5a), we consider the
following problem: the automobile in Fig. 1 has a total mass
M = 1.5 X 103 kg, has four wheel drive, and tires whose
coefficient of sliding friction on the road is ux = 0.9. In a
drag race, the driver accelerates the car so that all four
wheels spin. What distance S must the car go to attain a
final speed vcm, = 30 m/sec? Solution

Pseudowork = KE,,
we MgS = 'h M v,
S = 02/ (Qux g) = S1 m.

This solution uses ideas of energy and “work”™ without
reference to internal forces, rotational energy, or time. A
more standard solution would make use of dynamics with
Eq. (2), and essentially rederive our general starting point,
Eq. (5a), for this special case.

3 Supported in part by the NSF.

1 F. W. Sears and M. W, Zemansky, University Physics, 4th ed. (Addi-
son-Wesley, Reading, MA 1970).

2 D. Halliday and R. Resnick, Physics (Parts I and IT) (Wiley, New York,
1966).

Department of Mathematics, The University of Southampton, Sbuthampton, England SO9 SNH

(Received 9 April 1976)

In a recent note! it was pointed out that the “usual”
equipartition theorem can be generalized. Here we wish to
remind readers that this result is in fact a special case of a
further generalization.

In fact, let z be one of the generalized coordinates or
momenta g1, ... 45, p1, ... py of which the energy E(qy, ...,
py) is a given function. Then if E contains a term € = az”,
then

() = kT/r. )
The “usual” result occurs for r = 2.
If z exp —E(q1, ..., py)/kT vanishes at the limits of the
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integrations required in performing an average, then it can
be shown? that

(z0E/dz) = kT. 2)

The decomposition of £ into € = az” plus terms independent
of z, leads from Eq. (2) back to Eq. (1). The generalization
(2) is of particular use in special relativistic problems.

L. E. Turner, Jr., Am. J. Phys. 44 104 (1976).
2P. T. Landsberg, Thermodynamics with Quantum Statistical lllustra-
tions (Wiley, New York, 1961}, pp. 288, 422.
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