edge-up flotation behavior of the prisms is due to the fact,
that they are deprived of one of their degrees of freedom:
Their fourfold axis is constrained to stay parallel to the
liquid surface.

After these examples it should be dalliance for the daunt-
less reader to determine the equilibrium positions, as func-
tions of r, of the two remaining Platonic solids: the icosahe-
dron and the pentagondodecahedron.
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APPENDIX A

Explicit expressions for the integral I of Eq. (6) in the
cases needed in the analytic calculation:
() Ifa>1,b>1,and c>1:

[= — 1 1 . (Al)

24abc w’02+b2+(:2
(2) Ifagl, b<l,e<l,a+b21,b+c>1,a+c>1:

1= L L [a—1¢

,[az + b Z + CZ 24abc

+(b—1D*+ (c— D*—11.

(A2)

All about work
A. John Mallinckrodt® and Harvey S. Leff®

(3) Ifa<l, b<l,cxl,a+ b>1:
I = 1 1
Jaz ._l_ b2 +c2 24abc

+6(a*+b?) —4(a+b) +1].

[a*+b%—4(a®+b?)

(A3)

In this case,the immersed volume is
V.= (1/6ab)[1 — (1 —a)* — (1 — b)?].

There are five other cases, for which we do not give I. They
were used in the preliminary numerical work (see Sec. IT).

'Part 1 of this paper. Equations of Part 1 are referenced by the prefix 1;.

2Ch. Dupin, “De la stabilité des corps flottants,” 1814, included in Appli-
cations de Géométrie et de Mécanique (Bachelier, Paris, 1822).

3A. S. Ramsey, Hydrostatics (Cambridge U.P., Cambridge, 1936), p. 82.

“H. Lamb, Statics (Cambridge U.P., Cambridge, 1946), 5th ed., p. 421.

*H. Yeh and J. 1. Abrams, Principles of Mechanics of Solids and Fluids
(McGraw-Hill, New York, 1960), Vol. 1, p. 96.
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A comprehensive “taxonomy of work” is developed to clarify the confusing potpourri of worklike
quantities that exists in the literature. Seven types of work that can be done on a system of particles
interacting internally and/or with its environment are identified and reviewed. Each work is
defined in terms of relevant forces and displacements; mathematical connections between the
works are delineated; work-energy relationships are derived; and the Galilean transformation
properties of the works and corresponding energy changes are obtained. The results are applied to
several examples, illustrating subtle distinctions between the various works and showing how
they can be used to bridge the conceptual gap between the ““pure” mechanics of point particles and

the thermodynamics of macroscopic matter.

1. INTRODUCTION

It is widely appreciated that the definition of work en-
countered in most introductory physics textbooks,

W= f Fedr, (1)

is well defined only when the force acts either on a point
particle or a rigid body in pure translation."' In the realm of
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“pure” mechanics—that part of mechanics dealing with
nondissipative entities involving observable point parti-
cles—the use of Eq. (1) is straightforward.

In contrast, when mechanics is extended into a “real-
life” domain involving macroscopic objects with hidden
internal energy modes and dissipation, Eq. (1) is inade-
quate. Authors have invented a potpourri of worklike
quantities (hereafter referred to simply as “works”) to deal
with these situations.'!* These works go by a variety of
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names including internal work, external macroscopic
work, external microscopic work, pseudowork (also called
center-of-mass work ), conservative work, nonconservative
work, quasistatic work, thermodynamic work, and others.
The existence of this veritable zoo of works raises several
questions: How many types of works are needed? What are
the relationships between the works? What work-energy
relationships exist? Which works are frame dependent and
which are invariant under Galilean transformations? Can
the classical mechanics of a many-particle system lead to
an understanding of dissipative processes for macroscopic
objects?

Inspired by these questions and confounded by the ap-
parent confusion about the definitions for and relation-
ships between the various works, we present a systematic
examination of processes in which a classical, many-parti-
cle system undergoes mechanical interactions both be-
tween its own component particles and with its environ-
ment. We provide explicit, microscopically based
definitions of seven works that can, in principle, be calcu-
lated for such processes. From those definitions we derive
the relationships between the works and a set of “work-
energy relationships” that connect each work to a change
in some form of system energy. Finally, we determine the
Galilean transformation characteristics of all works and
energy changes.

Although this article is, in part, a review, its principal
value is as a needed synthesis and generalization of pre-
vious efforts. Using a consistent notation and terminology,
defining all relevant quantities unambiguously, and obtain-
ing the relationships between them, we provide, in essence,
the fundamentals of a complete “taxonomy of work.”

Our investigation is organized as follows: We begin in
Sec. II with a survey of prior applications of work concepts
to macroscopic objects. Sections III through VI comprise
the development of our “standard taxonomy of work.” In
Sec. VII we focus attention on a collection of engaging ap-
plications chosen to illuminate subtle distinctions between
the works and linkages between “pure” mechanics of point
particles and thermodynamics of macroscopic matter. We
close with a summary of our findings and a discussion of
the place of this study within the larger context of thermo-
dynamics. Readers who wish to scan the main results, by-
passing the details, are directed to Table I and Sec. VIII.

I1I. SURVEY OF THE LITERATURE

Much of the confusion surrounding the subject of work
arises from the lack of a standard and distinct notation
system for quantities that are similar enough to convey the
unfortunate and mistaken impression that they are identi-
cal. The collection of authoritative articles referenced be-
low illustrates this point. Individually, each employs nota-
tion that is internally consistent and well suited to the
specific investigation being conducted. Between articles,
however, one may find the same symbol representing fun-
damentally different quantities and/or different symbols
representing identical quantities. Our notation-free discus-
sion in this section is intended to illustrate the substance
and scope of previous efforts while avoiding notational
confusion.

Difficulties encountered by naively applying the work-
energy theorem to nonrigid and/or rotating bodies have
been the subject of articles by various authors.>'* Erlich-
son,” Penchina,® and Sherwood*® have pointed out that
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many interactions are best described in terms of a
“pseudowork-kinetic energy” theorem. Pseudowork is cal-
culated as the work that would be done by a force equal to
the net force acting on the system if it acted along the path
followed by the system’s center-of-mass (c.m.) and can be
shown to equal the change in bulk translational Kinetic en-
ergy of the system. It is not real work in a fundamental
sense because it generally entails forces that actually act at
points distinct from the c.m. through displacements that
can differ from that of the ¢.m.

In a recent review, “Developing the Energy Concepts in
Introductory Physics,” Arons® argues forcefully that “The
principal misconception planted in introductory physics is
that the ‘work’ quantity appearing in the ‘work-kinetic en-
ergy theorem’ ... obtained by integration of Newton’s Sec-
ond Law, is identical with the ‘work’ appearing in the gen-
eral law of conservation of energy, namely the First Law of
Thermodynamics.” Following Penchina® and Sher-
wood,*> Arons recommends the use of the term
“pseudowork™ for the quantity connected to displacement
of the c.m., “reserving the name ‘work’ for the quantity
appearing in the First Law of Thermodynamics.” He states
further, “...it is convenient because it does not completely
sever the connection between the two quantities and be-
cause it does not resort to a radically new vocabulary.”

As pointed out by Arons, careless use of the work-energy
equation can lead to mistakes and misconceptions. To illus-
trate the kinds of difficulties that can occur, consider a
completely inelastic collision between two identical
masses. Naive application of the standard work-kinetic en-
ergy theorem gives the result that the work done in stop-
ping each object is — 1mv?, where m is the mass and v the
initial speed of each object. Unfortunately, this is mislead-
ing because a straightforward symmetry argument’ shows
that the work done by each object on the other must be
identically zero! A proper treatment of this problem re-
quires one to take into account the energy of deformation.

Bernard® and Erlichson® have pointed out that the work-
kinetic energy theorem can be applied to interactions in
general if we take the “work” to be that done on a system by
both external and internal forces and the “kinetic energy”
to be that possessed by the system due to both its bulk
translational motion and the motions of its constituent
parts relative to the c.m. (For a solid body this second
constituent of the kinetic energy would include energy as-
sociated with bulk rotation and with the vibrational kinetic
energies of the molecules that make up the body.)

Canagaratna'® arrived at the same conclusion but put
the result in a different form by defining an internal poten-
tial energy change that is directly related to the work done
by internal forces during a change in the “relative configu-
ration of the constituent parts of the body.”” An interesting
aspect of Canagaratna’s work is the careful distinction
made between quasistatic and nonstatic work—a concept
that is particularly important in macroscopic mechanics
which, in essence, is thermodynamics.

Kemp'' has argued that difficulties related to the book-
keeping of internal work can be circumvented entirely by
appeal to the first law of thermodynamics in the form
A(mechanical energy of system and surroundings)

+ A(internal energy of system) -+ A(internal energy of
surroundings) = 0. This approach avoids explicit use of
work and heat terms, but also conceals the mechanisms
responsible for the energy transformations. In a similar
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vein Barrow'? has asserted that “There is no thermody-
namic role for the slippery terms ‘heat’ and ‘work.” We
should deal with energies and, in thermodynamics, with
the energies of the system and its thermal and mechanical
surroundings. Then all first-law energy calculations can be
done with a good accounting system... .”

Sherwood and Bernard'? proposed use of two forms of
the first law of thermodynamics—one frame dependent
and one frame invariant. In the frame-dependent version
the work is calculated using all external forces and the mo-
tions of their points of application and the system energy
includes bulk translational kinetic energy. In the frame-
invariant version the work is calculated using all external
forces and the motions of their points of application relative
to the system c.m. and the system energy does not include
bulk translational kinetic energy. (Note that this second
work is calculated in a frame that is not, in general, iner-
tial.) The difference between the two works turns out to be
precisely the pseudowork, which equals the change in bulk
translational kinetic energy.

The abundance of papers devoted to energy transforma-
tions and, in particular, work in macroscopic systems is
impressive and is indicative of the discomfort many physics
teachers experience in this area. It provides evidence that
further clarifications are needed. The “taxonomy of work”
presented in Secs. III-VI is intended to meet this need.

III. ASSUMPTIONS AND ELEMENTARY
DEFINITIONS

We consider a system of particles as shown in Fig, 1,
which may comprise either a rigid or deformable body, and
make the following assumptions.

Assumption 1: Qur system consists of a collection of N

Origin

Fig. 1. Depiction of the N-element system on which work is done. Element
ihas mass m,, the system has total mass M, and the c.m. of the system has
position vectorr, ,, relative to the origin. The position vectors of element /
relative to the origin, to the c.m., and to element j, respectively, arer,, F;,
and ;. The force on element 7 by element j is F;, and the sum of all such
internal forces on element i is Fi™. The net external force on element / is
Fo*, Although this figure depicts a continuous collection of elements re-
sembling a rigid body, the mathematical development assumes neither
continuity nor rigidity.
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elements, each of which behaves as a point particle. The
significance of this assumption is twofold: First, since ac-
celeration is strictly well defined only for point particles,
only point particles can strictly obey Newton’s second law.
Second, point particles, by definition, are devoid of internal
structure and are incapable of possessing internal modes
that store energy.

Assumption 2: The interelement forces are conservative.
This enables us to define an interelement, internal potential
energy function for the system.

Assumption 3: A classical, nonrelativistic analysis is ade-
quate. This assumption justifies our use of the simple Gali-
lean transformation and allows us to declare that all forces
and time intervals are invariant with respect to changes of
reference frame.

For the sake of notational clarity and precision, we col-
lect here the definitions of elementary quantities that are
used throughout the paper.

The element / has mass m;. The position (i.e., displace-
ment from the origin) and velocity of element / in a chosen
laboratory frame are denoted, respectively, by r; and
v;=dr,/dt. Each element i experiences a net external force
F?* due to its interactions with agents outside of the sys-
tem. In addition it experiences internal forces F; due to its
interactions with the other elements j# in the system. The
net internal force on the ith element is

Fint= Z F,.
JFi
The net force on element i is F*'=F* 4 Fi™,

The total mass of the N-element systemis M=Z2,m,. The
position and velocity of its c.m. are denoted, respectively,
by

1 dr_ . 1
rem=—>Ymr;, and v, =—T—"=—) myv,.
m = Z m= =y Z
The net force on the system is the sum of the net external
and net internal forces; i.e.,

Ftot = ext + Fim Ez F?Xt + Z Fiim'
However, because

Fo.= ZF}m = Z ;AFij = z Z (Fij +Fji) =0
i I i i j>i
by Newton’s third law, we have F,,, = F,,,.

The position and velocity of element i relative to the sys-
tem c.m. are denoted, respectively, by f,=r;, —r_,, and
¥,=d¥,/dt = v, — v_,,, . Finally, the position of the ith ele-
ment relative to the jth element is denoted by

-
;
-

|

b

|
-

|

N

IV. WORK DEFINITIONS

We now consider a process in- which the system elements
interact with each other and/or the external environment
and change their positions relative to each other and/or the
laboratory frame. The laboratory frame is inertial but oth-
erwise arbitrarily chosen. The process is understood to take
place during a well-defined “interaction time period”
over which all integrals are carried out.

We begin with a definition of the total work done on the
system—the sum of the works done on each of its elements:
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W= S [ P, @)

Note that the total work will, in general, include nonzero
contributions from internal forces. We may consider the
work done by external and internal forces separately and
define, respectively, the external and internal works:

W= z J F?Xt'dri’ (3)

Wi = z J F"dr,. G

Equations (2)—(4) define the three works, W,,,, W,
and W,,, which we characterize as “frame specific” (as
opposed to “frame dependent”—a term we reserve for
characterizing the transformation properties of various
quantities) because each involves integrals over the paths
of the system elements in the inertial laboratory reference
frame. (We shall see that although W, is frame specific, it
is not frame dependent.)

A fourth worklike quantity is the pseudowork:

Wps = Z f Fdr, ,, = f Fodr ,, = f Feydr. o, -
(5

W, is also “frame specific”” because the motion of the c.m.
is relative to our chosen laboratory inertial reference frame.
(Some authors prefer to call W, “center-of-mass work,” a
name we avoid because of its potential for confusion with
the works defined in the next paragraph.)

We now define three quantities that are analogous to
Wi, We.,and W, , but which involve displacements rel-

ext?

ative to a nonrotating frame traveling with the system c.m.
Note that this frame is, in general, not inertial. These “sys-
tem-specific’” works are defined as follows:

Wiy = z f F:'m'df';" (6)
wcxt = z f F?m'dii’ (7)

Winy = z f Fl;'m'dfi- . (8)
The seven works defined in Egs. (2)—(8) aze not inde-

pendent. The following four relationships are readily
derived:

mm =

mm = Z f F?Xt.d(rc.m. + i:z)
= f cht 'drc.m. + z f F?Xt.di:i

= Wps + Wexes (10)
W= 3 f Frod(r,,, +F)

= f Fint .drcm. + z f F‘:'m.di;i
= Wine»

wtot = wext + wint .

(11)
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ext + n/int’ (9) :

(12)

Using these four relationships all seven works can be ob-
tained, for instance, from a knowledge of W,,,, W, and
W In the next section we show that these three works—
and, by extension, all the others—are directly related to
changes in distinctly different forms of system energy.

V. WORK-ENERGY RELATIONSHIPS

By definition, work is a function of a mechanical process.
However, we show here that each of the “works” defined
above can be related via a “work-energy relationship” to a
change in some purely state-dependent function that we
refer to as an “energy.” We first derive such relationships
for }i/mt! Wps! and mm ‘

Starting with Eq. (2) we find,
W= S [ Frvar,
dv; 1 J‘
= m,—w, dt=Y —m; | d(v?
3 mGimdi= g gm [ doh
(z3m)

i

— AK,,. (13)

Here we use our assumption that system elements behave
as point particles that obey Newton’s second law and intro-
duce the definition,

Mo =A( 54 ma).

for the change in the total kinetic energy of the system
during the interaction period. By expressing the velocity of
element / in terms of its velocity relative to the c.m.—i.e.,
by using the relationship v, = v, + ¥,—we find,

AKtot = A( Z % milvc.m. + vi l2)

(14)

= A( z%m,. (02, +02+ 2(vc.m.'ﬂ)])

i

- A(Z % m,-vi.m.) + A(; % m‘ﬁ’?)
+ A(Z m; (Vo *¥; ))
- A(% Mvim.) + A(z % m"ﬁ‘g)

i

+ A(vc.m. * z mii.’i)

= AK,, + AK,, (15)
where we use the fact that 3,m, ¥, = 0 (by the definition of
c.m.) and introduce the definitions,

AK, EA( . Mv%.m.) ,

AK,, EA( > -;- m,.b,?) .

AK,, is the change in the bulk translational kinetic energy
of the system—the energy that the system possesses by vir-
tue of the motion of its c.m. relative to the observer. AK,, is

int

(16)

(17
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the change in the internal kinetic energy of the system—the
energy that the system possesses as a result of deviations of
the velocities of its elements from that of the c.m. These
deviations can include the effects of vibration and bulk
rotation.

Next, starting with Eq. (5) we find

dv,
W, EZ J Foldr, = Z J m; —?;-drc_m_
=5 [ 2 (e +70)
_ i dt .m. c.m.
dv v,
- ) cm. | d ) N
2’.: m; J‘ dt Vem. r + Z f m; dt drc-m-

=%MJd(v§m) + J‘(%Emtvz) .drc.m.
=A( MV, )
= AK,,. (18)

This is the well-known pseudowork-kinetic energy rela-
tionship.
Finally, starting with Eq. (4) we find,

Wu=3 [Frd= 35

[

=y (J-F,-,-dr,. + f F,.,.-drj)
all pairs

= Z fFij-d(ri—rj)

all pairs

= 3 JF,-J.-dr,-j
all pairs

= 3 |aw,
all pairs
(

—AD,) = — AD,

F+dr;

(19)
all pairs
where we use Newton’s third law (F; = —F;) and our
assumption that all internal forces are conservative, and
introduce the definitions,
dW,=Fdt;, AD;= — J dw,;

ij

and
Ad= 2 Ad

all pairs

A® is the change in the internal potential energy of the
system—the energy that the system possesses by virtue of
the conservative interaction forces between its elements. In
the case of a rigid body these would be the “binding forces”
and changes in ¢ would result from temporary or perma-
nent deformations. In the usual fashion it is the assumption
of conservative internal forces that allows us to assert that
each work integral is path independent and to define the
potential energy functions @ for each interacting pair of
elements.

Equations (13), (18), and (19) are work-energy rela-
tionships for three of the seven works defined in the pre-
vious section. With the help of the four relationships be-
tween the works in Egs. (9)—(12) we derive the following
four additional work-energy relationships:

(20)

i
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W.. = AE, 21)
We. = AU, (22)
Wine = — AD, (23)
W = AK,,, (24)
in which we introduce the following definitions:
AU=AK,, + AD, (25)
AE=AK, + AU. (26)

AU s the change in internal energy of the system, which
includes both kinetic and potential energy contributions.
AE is the change in total energy of the system, which in-
cludes changes in both the internal energy and the bulk
translational kinetic energy. Note carefully that there is no
term representing the potential energy of the system with
respect to its surroundings since the contributions of all
external forces—conservative or not—are accounted for
on the “work side” of our work-energy relationships.'*

The seven works and their six associated energy changes
are summarized in Table I, which also gives the defmition
of each quantity, the auxiliary relationships between it and
the others, an interpretation of each work-energy relation,
and whether it is frame dependent or frame invariant.
(Transformation properties are discussed in the next
section.)

We reiterate that among the seven works and six energy
changes there are only three independent quantities. Al-
though many sets of “basis” quantities might be chosen,
perhaps the most appropriate candidates are: (1) AK,,
which is simply associated with the choice of laboratory
frame; (2) AK,,, which characterizes the change in the
internal state of motion of the system; and (3) A®, which
characterizes the change in the system’s configurational
energy. Taking these three quantities as our basis we may
summarize the relationships between the quantities in ma-
trix form:

[,Vtot 1 1 0
( Wexl \ 1 1 1 \

Wine 0 0 -1

W 1 0 0 AK,
Wo |_|O 10 AK,, 27
w 0 1 1

ext 1 A(b

wint 0 0 -
Y B S

U ) 01 1

AE 1 1 1

VI. TRANSFORMATION CHARACTERISTICS

In this section we investigate the transformation charac-
teristics of the previously defined works and energy
changes. As indicated by Eq. (27), we need only determine
the transformation characteristics of AK,,, AK,,,and AP
because all other quantities can be obtained in terms of
these. We determine the values of these energies in a “u
frame” traveling with velocity u with respect to the labora-
tory frame. The interelement forces are independent of ref-
erence frame by assumption and the Galilean transforma-
tion to the u frame yields,
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Table I. Seven works with definitions, equivalent energy changes, interrelationships, interpretations, and frame-dependence properties. Each of the seven
works and six energies is precisely defined in terms of the masses, trajectories, and velocities of the particles that make up the system and the forces that act

on them during the interaction process.

Associated energy

Interpretation and

Work change frame dependence
Wa=3 J F{°'dr, AK,, = ( D L m,v,z-) The frame-specific total work is equal to
i T2 the change in the total kinetic energy.
=W, + W, = AK,, + AK,, Frame dependent.
Wee=Y J Fi*dr, AE=AK, + AU The frame-specific external work is equal

to the change in the total energy.

=W, +w,, =AK, + AK,, +A® Framedependent.
W= J- Firedr; —A®= ¥ | Fydiy The frame-specific internal work is equal
7 all’ pairs and opposite to the change in the internal
potential energy.
=w Frame invariant.

int

AK, =A(3MY,

Wps = E f F:.""drc'm_

The pseudowork is equal to the change in
the bulk translational kinetic energy.

Frame dependent.

wo= 3 [ Fa 8Ky =3 1 m7

i

= Weyy + Wing

The system-specific total work is equal to
the change in the internal kinetic energy.

Frame invariant.

AU =AK,

Wey = ZJ‘F?"dii

i + AP

The system-specific external work is equal
to the change in the total internal energy.

Frame invariant.

wn= 3 [ Fa,

_A(I)

The system-specific internal work is equal
and opposite to the change in the internal
potential energy.

Frame invariant.

’

Vi =Verm —W, V/=V, and F,=F,. (28)

Therefore,
AK; =AM v, —ul?)

= AK,, — wAP, (29)
where P=Mv__, , the linear momentum of the system. Of
course, AP equals the impulse I = (F,,, d¢ on the system
during the interaction period. The impulse and, therefore,
the momentum change AP are manifestly invariant with
respect to Galilean changes of reference frame. Equation

(29) makes it clear that AKX, #AK; unless uAP =0.
Proceeding:

’ 1 n’
AK!, = A(Z, > m,.v,.z) = AK;, (30)
and
Ad = — F,-di; = A®. (31)
all pairs
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Thus AK,,, and AP are frame invariant while AK,, is frame
dependent.

Equations (29)-(31) demonstrate that, of our three
chosen basis quantities, only AK,, is frame dependent. As a
result, only those works and energy changes that show a
dependence on  AK,, in Eg. 27)—i.e,
Witr Wens» Woss AK,,,, and AE—will themselves be
frame dependent. Furthermore, because of their simple ad-
ditive dependence on AK|,, each will transform in a man-
ner identical to Eq. (29).

Two corollaries are immediately evident.

Corollary I: For any interaction process with AP = 0, a//
works and energy changes are frame invariant and
AK, =0. It then also follows that W, =0, that
Wit =W = AK,, = AK,,, and that Wet = Wext
=AE=AU.

Corollary 2: For any interaction process in which
AP +#0, we can find families of reference frames in which
any given frame-dependent quantity takes on any desired
value including, for instance, zero. These families are de-
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termined by the requirement that their frame velocities rel-
ative to the lab frame obey u-AP = (value of the quantity
in the lab frame) — (desired value). This relationship im-
plies that the relative velocity between any two frames in
such a family is perpendicular to AP.

VII. APPLICATIONS

In this section we consider four examples illustrating the
applications of our results.

A, Example 1: Head-on collision

Here we consider a one-dimensional, completely inelas-
tic collision between two objects, each of mass m.” In the
c.m. frame, their velocities prior to the collision are + v
and — v; after the collision they are both at rest. We take
our system to comprise both objects. In any frame we find
AK,, = 0 because the c.m. velocity is constant. Further-
more, because there are no external forces acting on the
system W,,, = 0 again in any frame. The second row of
Table I then shows that AU = AK,,, + A® = 0. Notice
that K, includes the translational kinetic energies of both
objects as well as the system’s total microscopic kinetic
energy; i'e" AK'int = AKtr,l + AKtr,Z + A'Kint,mir:rcoscopic' It
is straightforward to show that AK, |, + AK,., = — mv’
in any frame. Therefore, AK,, microscopic + AP = mv* (in
any frame) and we conclude that the effect of the head-on
collision is that an amount of energy mv* (which was ma-
croscopically observable before the collision in the form of
the bulk kinetic energy of its two important components) is
converted into macroscopically unobservable internal po-
tential energy and microscopic kinetic energy. Notice that
there is no heat transfer involved in this process—although
there might be as a result of the process. The energy trans-
formations we are discussing here are calculable, at least in
principle, by a purely mechanical theory.

If we define our system to be one of the two objects, we
find highly frame-dependent values for W_,, and AK,, and
it becomes more convenient to consider the system-specific
works. For instance, since the contact surface with the oth-
er object will, predominantly, move toward and exert
forces toward the system c.m., we find that w,.,, = AU>0;
i.e., the internal energy increases due to the compressive
forces of the collision. On the other hand, without further
details we cannot determine the sign of w,,, and, therefore,
of A®. Although we might anticipate increased internal
potential energy, the collision may just as well act as the
catalyst for its release.

B. Example 2: Free expansion of a gas

Next we consider a gas confined to the left half of an
enclosure with the right half entirely empty. The system
elements here are gas molecules. The enclosure is assumed
to be “perfectly insulating” so that energy transfer between
the gas molecules and the environment is negligible. We
denote the internal energy of the gas by U, view the system
in the rest frame of the enclosure, and assume the initial
c.m. velocity of the gas is zero. Now suppose the partition
separating the left and right halves of the container spon-
taneously collapses allowing gas molecules to fill the entire
enclosure.

With the collapse of the partition, the leftward force pre-
viously constraining the molecules to the left half becomes
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zero. The force from the left wall is still nonzero, so there is
anet force directed to the right. Although this force does no
real physical work, it does generate positive pseudowork
(because the rightward force acts on the gas while its c.m.
moves to the right) that is related to the increased bulk
translational kinetic energy—i.e., W,, = AK, > 0. At all
times, however, we have W_, = 0, so Table I shows that
AU= — AK,, <0. That is, the bulk kinetic energy is de-
rived from the internal energy of the gas. Furthermore, if
the gasis “ideal” in the sense that the intermolecular poten-
tial energy ® =0 (or is at least negligibly small) then
AU = AK,, and we see that the translational kinetic ener-
gy is, in a sense, nothing more than “redirected” internal
kinetic energy. The nonzero bulk translational energy of
the system is only temporary, however. As the gas expands
to fill the enclosure, the new right wall begins to exert a
force greater than that from the left wall. This generates
negative pseudowork (because a net leftward force now
acts on the gas while its c.m. is still moving to the right ) and
decreases the bulk translational kinetic energy. After being
brought to rest the c.m. may reaccelerate to the left and the
process may repeat as the gas “sloshes” back and forth
until the amplitude of the c.m. motion decreases to the level
of statistical fluctuations.

It is instructive to look at the process from the stand-
point of the system—specific works also. Just after the parti-
tion collapses, the left wall moves to the left (from the
standpoint of a frame moving with the system ¢.m.) while
exerting a force toward the right and, therefore, performs
negative system-specific external work. Table I shows that
W, = AU = AK,,, <0;i.e., the internal energy of the sys-
tem decreases in agreement with the analysis above. Later,
when the right wall begins to exert its large leftward force
while moving to the left (again as seen from the system
c.m.), positive system-specific external work is done and
the internal energy of the system increases again.

Once equilibrium is reached and the net force is again
zero, the gas has its initial internal energy U = U,. If the
gas is “ideal” this means that K;, = K|, ;. However, the
final configuration leaves the NV molecules farther apart on
average and, if the gas molecules interact according to a
typical intermolecular potential energy, this configuration
is expected to have an increased potential energy ®. The
constancy of U then means that the internal kinetic energy
has decreased. We learn in thermodynamics that the “free
expansion” of an ideal gas leaves the temperature un-
changed while that of an interacting gas leads to a tempera-
ture decrease. Thus we find a correlation between tempera-
ture and kinetic energy for a classical gas. Although this
connection is not necessarily valid for other systems, ' it is
commonly encountered in both kinetic theory and statisti-
cal mechanics. The fact that it is suggested by a classical
mechanics argument is noteworthy.

C. Example 3: Slow expansions of an ideal gas

Here we consider slow expansions of an ideal gas
(® =0) under two different special circumstances. In
both cases the N-element gas is assumed to be in a horizon-
tal cylinder, the right vertical wall of which is a movable,
frictionless piston. The expansions, whereby the piston
moves through a distance d, are assumed to be sufficiently
slow that the piston’s force F ;,,, (leftward) on the gas is
equal to the opposing external force F,o (rightward) at
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the fixed, left container wall. This infinite slowness means
that the interaction time 7 becomes arbitrarily large; such
processes are called quasistatic. Of course, Fy,, and F,
are both expected to decrease in magnitude as the gas ex-
pands but this does not affect our analysis.

For the first expansion type we assume that the only
energy interactions with the gas are via work done by the
piston. Because the molecules of an ideal gas do zero work
on each other,

d
mm = Wext = f Fpiston ’dr<0-
0

The inequality holds because the piston force is directed
left while its displacement is directed right. Referring to
rows 1 and 2 of Table I (which are identical for an ideal
gas), this implies W,,, = AK,, + AK,,, <0. Row 4 tells us
that W, = 0 because the net force on the system is identi-
cally zero at all times. This implies AK,, = 0, as expected
because of the slowness of the piston action. Using the lat-
ter result in row 1, we have W,,, = AK,,, <0;i.e., the work
on the gas is negative and equals the change in its internal
energy. In other words, the gas does positive work
( — W, ) on the piston at the expense of its internal ener-
gy. The piston’s energy does not change because it moves
arbitrarily slowly. Of course some other agent, which is
unspecified here, must receive the energy given up by the
gas. In thermodynamics an expansion where the only ener-
gy transfer is mechanical is referred to as an adiabatic
expansion.

For the second expansion type we assume that (some-
how) the internal energy of the gas does not change; i.e.,
AK, . = 0. The zero-net-force constraint assures, as in the

int

latter case, that AK,. = 0. Thus row 1 of Table I implies
d
mm = l'I/ext = f Fpiston 'dl' = AK'im = O‘
0

This contradicts the obvious fact that the integral must
have a nonzero (in fact, negative) value.'® We conclude
that ifit is possible to maintain the constancy of K, during
a slow expansion this must come about via nonmechanical
means. Referring to the suggestion in Example 2 that the
constancy of K, can be related to temperature constancy
we are tempted to envision the possibility of a slow, nona-
diabatic, isothermal expansion during which a nonme-
chanical energy transfer occurs. Such expansions are com-
monplace in thermodynamics where the nonmechanical
energy transfer is called heat. Again, classical mechanics
has led to an important thermodynamic concept.

D. Example 4: Conveyor-belt variant

The standard conveyor-belt problem envisions the con-
tinuous flow of mass onto a constant-velocity horizontal
belt. Despite its simple description, this problem contains
subtleties that have engendered a rather interesting litera-
ture.'” We consider a variant here in which a crate of mass
m is placed, with zero velocity in the lab frame, onto a
horizontal belt moving with velocity v. As the crate is accel-
erated to velocity v in time 7, a force F, is applied to the belt
in order to maintain constant speed. Row 2 of Table I
shows that, during the acceleration, the external work done
on the crate is W,,, . = imv* + AU.. Similarly, the exter-
nal work done on the belt
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W = fFe x4 (= W) = K,y + AU, = AU,

because the constant-speed constraint insures that
AI(tr,b = 0

We assume that the friction force on the crate (and thus
on the belt) is constant throughout (0,7), whence the
above integral reduces to F,d = F,vr and we find from
above that F,vr — lmv?> = AU, + AU, . The force F, gen-
erates impulse F, 7 that must equal the change in momen-
tum mv of the crate. Thus F,vr = mv* and we have the
result AU, + AU, = Imv®. The interpretation here is that
the crate cannot be accelerated without the existence of
friction and such friction cannot act without being accom-
panied by energy dissipation. We might account for the
energy transformations by saying that half of the work
done by F, is dissipated into internal energy and the other
half goes into the bulk translational kinetic energy of the
crate. We will see, however, that this view of the overall
energy accounting is highly frame dependent.

Consider an analysis of the same situation from the view-
point of the (inertial) frame of the belt. In this frame
Wiwe = —imv* + AU,. The force F, does zero work in
this frame because we assume that the displacement of its
point of application is zero. Thus

W;xt,b =0+ ( - Wéxt,c) = AKt,r,b + AU, = AUb'

Combining the latter two equations  gives
AU, + AU, = Imv?, in agreement with our result in the
lab frame. It is also easy to verify that the works on the crate
and on the ©belt transform properly; ie.,
W;xt,c = Wext,c - u'APc = Wext,c - va and éxt,b
= W, — wAP, = W, ,. However, in contrast with the
overall energy accounting given in the lab frame, the source
of the dissipated energy (which is frame invariant) now
appears to be the initial kinetic energy of the crate. These
results serve to emphasize the slipperiness of trying to per-
form this type of energy accounting.

Because the belt’s momentum does not change (i.e.,
AP, =0), Corollary 1 (in the previous section) shows
that all works on and energy changes of the belt are frame
invariant. On the other hand, since AP, %0, we may apply
Corollary 2 to the crate. Consider a frame moving right
with velocity v/2 relative to the lab frame. In this frame
AK [ . = 0 because the crate begins with velocity — v/2
just after it is placed on the belt and ends with velocity

+ v/2 at full speed. The total work done on the crate in this
frame is W, =W, + W/, =AK,. . which is
equivalent to saying that W, . = AU..

We may locate yet another frame with velocity
v/2 + AK;,, ./mv relative to the lab frame in which the
total work on the crate vanishes; ie., W[, =0. It is
straightforward to verify that, in this frame,
AK, . = — AK,, .. This example makes it clear that the
total work can be made to vanish simply by choosing our
inertial frame of observation such that the bulk transla-
tional kinetic energy change is equal and opposite to the
(frame invariant) internal kinetic energy change. A frame
in which the external work vanishes can be found in a simi-
lar manner.

VIII. SUMMARY AND CONCLUSIONS

Table I summarizes the main findings of this paper. We
return briefly to the questions raised in Sec. 1. First, how
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many types of works are needed? The answer is that three
works are sufficient to generate the set of seven works that
have been identified. Second, which works are independent
of the others? Because of the four relationships that exist
between the seven works (indicated after the definitions of
Wois Wexes Wi, and w,,, in the first column of Table I),
there are only three independent works. Third, what work-
energy relationships exist? These are shown by the asso-
ciated energy changes in the second column of Table I,
which also gives the elementary definitions of the energy
changes and their interrelationships. Fourth, which works
are frame dependent and which are invariant under Gali-
lean transformations? These are indicated by a comment in
the third column of Table I and comprise all works and
energy changes that show a dependence on the value of
AK,, in Eq. (27).

Finally, can the classical mechanics of a many-particle
system lead to an understanding of dissipative processes for
macroscopic objects? The answer here is a conditional
““yes.” Classical mechanics enables us to associate dissipa-
tion with systems that have hidden energy modes—namely
the modes associated with the large numbers of molecules
that comprise a macroscopic system. It illustrates that ma-
croscopically observable “bulk™ energy can be converted
into internal energy and makes plausible the experiential
fact that the reverse process is less easily achieved because
we have no practical way to control the numerous energy
transformations among the molecules that make up an ob-
ject. After all, the reversal of a head-on, totally inelastic
collision would require arranging energy transfers among
~10% molecules such that they spontaneously exhibited
bulk translational motion, This would be quite remarkable!

On the other hand, if the head-on collision is only slight-
ly inelastic then the two colliding objects do recover a frac-
tion of their bulk motion as they bounce off each other. In
this sense elasticity can be associated with memory. Elastic
materials “remember” their initial configurations—at least
partially—and facilitate the ordered energy transforma-
tions needed to produce bulk motion. Just as elastic pro-
cesses exhibit memory effects, inelastic processes do the
reverse—erasing memory. For example, if a ball is dropped
from a height of 1 m, bounces a few times and then comes to
rest, there is no way to uniquely reconstruct its initial con-
figuration from an analysis of the internal energy gains of
the ball and ground. Loss of information regarding the ini-
tial condition can be thought of in terms of a gain of missing
information. This has nothing to do with a particular ob-
server; the information is missing for any observer whose
power of measurement is limited to typical macroscopic
resolution levels. The importance of memory effects in
thermodynamics is exemplified by Bennett’s innovative
analysis of the Maxwell’s demon puzzle, whereby the de-
mon is prevented from violating the second law because its
memory must be erased.'® Of course, classical mechanics
does not predict this loss of information. That requires the
apparatus of thermodynamics and/or statistical physics to
develop the second law of thermodynamics.

The results of this paper have led us indirectly and in-
completely to the concept of heat. Roughly, conductive
heat transfer can be viewed as external work performed at
the system interface via “collisions” with the elements of
neighboring systems. Though appealing, this explanation
fails to make a clear distinction between heat transfer and
mechanical work at a surface. That distinction can indeed
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be a difficult one.!® In thermodynamics, it is sometimes
based upon observable macroscopic work processes and
sometimes upon heat transfers between objects with mea-
surable temperature differences. While the spirit of classi-
cal mechanics is to describe a/l the elements of a system, the
spirit of thermodynamics is to deal only with macroscopi-
cally observable quantities. Attempts to bridge the gap be-
tween these two disciplines easily lead to the simultaneous
consideration of both macroscopic and microscopic phe-
nomena. This is conceptually pleasing but, as in the classic
case of Maxwell’s demon, we must be mindful of what
quantities are measurable macroscopically and what quan-
tities are useful only from a conceptual viewpoint.>®
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Small rare-earth magnets have remarkable properties that can be exploited in the construction of
simple measuring devices. Examples are a torsion pendulum that measures the earth’s horizontal
magnetic field and a gravimetric pendulum that responds to the small susceptibilities of various
“nonmagnetic” materials. These preliminary demonstrations lead to the design of a practical
device for measuring the susceptibilities of feebly magnetic metals in low magnetic fields. Our
laboratory has used this last method to determine relatively small magnetic susceptibilities, down
to 0.0003, to an uncertainty of less than 20%. A convenient feature of our apparatus is that
calibration by a susceptibility standard is not required.

I. INTRODUCTION

Small but powerful rare-earth magnets are readily avail-
able from commercial sources. Cylindrical magnets with
diameter. twice their length are so stable that they are
shipped already magnetized and no “keeper” is required.
The building blocks of the devices to be discussed below are
cylindrical magnets of samarium—cobalt’ having a diame-
ter of 5 mm and a height of 2.5 mm. They have a magnetiza-
tion M of about 900 kA/m, aligned along the geometric
axis of symmetry. Although this magnetization (an inten-
sive quantity) is typxcal of the most powerful permanent
magnets of any size, the magnetic dipole moment m (an
extensive quantity) is conveniently small.

The small magnetic moment and compact shape of these
magnets lead to the following desirable properties: the di-
pole approximation becomes appropriate at about 10 mm
from the geometric center of a magnet;® at 10 cm from the
magnet, the fields are already far too weak to destroy mag-
netic coding on credit cards and other tape media; there is
little chance of physical injury to the experimenter as at-
tracting magnets are placed together. The last two proper-
ties are important safety features, as anyone who has
worked with powerful magnets will agree.

Section IV describes a simple device, based on a magnet-
ic dipole, for low-field measurements of the weak magnetic
susceptibility of materials such as AISI 304 stainless steel.
The two preliminary experiments of Sec. III provide in-
sight into the magnetic dipole and its interaction with fee-
bly magnetic materials. The work presented below was mo-
tivated by our need to select metals that are sufficiently
nonmagnetic for constructing precision mass balances.
This application is also discussed in Sec. IV.

A basic acquaintance with magnetostatics is required in
what follows although expertise in the rather specialized
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discipline of permanent magnets will not be necessary. We
have chosen Duffin’s Electricity and Magnetism® as our
principal reference in part because it uses SI units through-
out. The magnetic dipole plays an important role in our
theoretical analysis so we begin with a brief review of its
mathematical description.

II. THE MAGNETIC DIPOLE

When a permanent magnet is placed in a uniform B field,
it is subject to a torque I':

I' =mXB. (n

Equation (1), in Duffin’s treatment,* defines the mag-
netic dipole moment m. The direction of m is that of the B
field when the freely suspended magnet is in equilibrium.
The magnitude of m is the torque experienced by the mag-
net in a B field of 1 T when m is perpendicular to B. Al-
though the units of m are evidently N m T -1, it is custom-
ary to use the equivalent units A m” Duffin defines the
magnetlzatlon M as the magnetic dipole moment per unit
volume:®

dm =M dr, (2)

where dr is a small volume with magnetic moment dm.

With the magnetic dipole moment defined, we restate
the familiar relations in spherical coordinates for the B
field in vacuum at distances large? compared to the magnet
dimensions:

2mcos @ B m sin 6
5 5 PeTHo——5;

s = 0’
4zr3 4zr3

(3)

where r is the distance from the dipole, 6 is the angle
formed by r and the dipole axis, and u, is the vacuum per-

Br = o
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