w2
F=4xGmp J; / (R3/r?) singd¢ cos’¢p

= GmM|/r?, &)

where M = 4w R3p/3 is the mass of the Earth.

The proof has been presented for the case of a homoge-
neous sphere, but it is easily generalized to the case of a
spherical shell, and hence to the case of an arbitrary
spherically symmetric mass distribution, by means of an
obvious superposition argument.3

This method is particularly simple when the test mass is
on the Earth’s surface, i.e., ¥ = R. In this case the limits on
x are 0 to 2R cosé, the limits on § are from 0 to = /2, and ¢
is not needed. For certain courses, the present derivation
in general might be judged too difficult for students, yet it
would be desirable to present more than a mere assertion
of the theorem’s validity. In these instances, restriction of
the presentation to the special case » = R, which is perhaps
the case of greatest interest, would be an attractive inter-
mediate option.

Also, for r = R the present method is easily generalized

to non-inverse-square forces. For the force law, Fi; =
G’mmy/rt,, it is found by the same method* that (n <
3)

F =2xG’'mp(2R)3~"/(3 — n) (5 — n),

and therefore, the property of “effective mass concentration
at the Earth’s center” holds only for n = 2.

2)Supported in part by the National Research Council of Canada.
b)Present address: Cryogenics Division, National Bureau of Standards,
Boulder, Colorado 80302.

1See, for example, D. Halliday and R. Resnick, Fundamentals of Physics
(Wiley, New York, 1974), p. 255.

2See, for example, R. Murray and G. Cobb, Physics: Concepts and Con-
sequences (Prentice-Hall, Englewood Cliffs, NJ, 1970), p. 153.

3The method could be generalized to, but is not particularly suited for, the
case of a mass inside the Earth, i.e., » < R. However, it is easily shown
that the force of gravity inside a spherical shell is zero because of can-
cellation of forces from area elements on opposite sides of the test mass.
That argument can be used to supplement the proof here for the case
r < R. See Ref. 1, p. 273.

4The force of gravity becomes infinite for n 2 3.

Work and kinetic energy for an automobile coming to a stop
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A standard problem in introductory mechanics is the
following one taken from Halliday and Resnick: “Show
from considerations of work and kinetic energy that the
minimum stopping distance for a car of mass m moving
with speed v along a level road is v2/2pu,g, where u; is the
coefficient of static friction between tires and road.”! In the
solution of this problem one usually refers to the external
frictional force on the car and one sets what seems to be the
work of this frictional force equal to the change in the ki-
netic energy of the car. That is, —f.d = 0 — Yymo?, u;mgd
= Ybmo?, and d = v2/2ug. However, as is well known, the
frictional force between tires and roadway does no work
(assuming no slipping). Hence, in the solution of this
problem the particle model forces one into the difficult
situation of seeming to say that the frictional force does
work, when we know that it does no work. How are we to
handle this situation as teachers?

In the first place, we must note that the automobile is not
a particle. So perhaps one way out of the difficulty is to treat
the automobile as a collection of particles and to write

Wext forces + Wint forces = AK.

The work done by the brake friction forces shows up in the
sum Wiy forces. Since the external forces do no work we have
Wint forces = A K. This is all right as far as it goes, but how
do we calculate the work of the internal forces and get the
minimum stopping distance? We come back to the original
solution to the problem.

Since the original solution is correct we must clarify the
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principle involved in this solution (i.e., clarify it to our stu-
dents). For a system of particles we have

* ZFext = Macn,
szext cdrey, = A(l/ZMvgm)- (1)

Equation (1) looks very much like the work-energy theorem
for a particle. However, the term on the left is not equal to
the work of the external forces unless the infinitesimal
displacement for each external force equals the infinites-
imal center-of-mass displacement, dry, (pure translation).
This is what causes the trouble with the automobile stopping

~ problem. The left side of the equation is —f;d, but this-is not

equal to the work of the frictional force. The work of the
frictional force is zero, as previously mentioned. Equation
(1) should not really be called a work-energy theorem
(except for pure translation).

The important thing is that we be rigorous in our teaching
and that we carefully avoid a trap such as the one which is
implicit in the wording of the Halliday and Resnick prob-
lem? originally quoted.

The author wishes to acknowledge a helpful discussion
with his colleague William Chinitz on this problem.

'D. Halliday and R. Resnick, Fundamentals of Physics, revised printing
(Wiley, New York, 1970), p. 108a, problem 24(5).

2This problem is also handled in a misleading way by other authors. For
example, K. Ford, in Classical and Modern Physics, Vol. 1 (Xerox
College, Lexington, MA, 1972), p. 430, problem E10.16, gives the same
problem and refers it to his section on “Work and kinetic energy for
one-dimensional motion.”
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