ACKNOWLEDGMENT

We would like to thank R. H. Parmenter for many help-
ful discussions.

'J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175
{1957).

?B. D. Josephson, Phys. Lett. 1, 251 (1962).

3p. W. Anderson, in Lectures on the Many-Body Problem, edited by E. R.
Caianello (Academic, New York, 1964), Vol. 11, p. 113.

“Richard P. Feynman, Robert B. Leighton, and Matthew Sands, Lectures
on Physics (Addison-Wesley, New York, 1965), Vol. III, Chap. 21, p. 14.

Pseudowork and real work
Bruce Arne Sherwood

SP. W. Anderson, Phys. Rev. 112, 1900 (1958).

“Patrick A. Lee and Marlan O. Scully, Phys. Rev. B 3, 769 (1971).

"Leon N. Cooper, Phys. Rev. 104, 1189 (1956).

*D. J. Thouless, Phys. Rev. 117, 1256 (1960).

°Andrew L. DiRienzo and Richard A. Young, Phys. Rev. B 25, 6684
(1982). For additional information on charged superconductors see: R.
E. Glover 111, S. K. Ghosh, and W. E. Daniels, Jr., in Proc. Int. Sympo-
sium on Basic Problems in Thin Film Physics, Clausthal, September
1965, edited by R. Niedermeyer and H. Mayer (Vandenhoeck and Re-
precht, Géttingen, Germany, 1966), p. 536; A. Bardasis, Phys. Rev. B
26, 1477 (1982).

M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8, 316
(1962).

' P, R. Wallace and M. J. Stavn, Can. J. Phys. 43, 411 (1965).

Computer-based Education Research Laboratory, Department of Physics and Department of Linguistics,
University of Hllinois at Urbana—Champaign, 252 Eng. Res. Lab., 103 S. Mathews, Urbana, Illinois 61801

(Received 7 January 1982; accepted for publication 28 July 1982)

In teaching mechanics, we should more clearly distinguish between an integral of Newton’s
second law and the energy equation. This leads to greater clarity in the notions of system, work,
and energy. A reorientation of the treatment of work and energy would not only provide benefits
in the mechanics course but would also produce better connections between the mechanics and

thermodynamics courses.

I. SOME PUZZLES

When a car accelerates from rest, it appears that the kin-
etic energy is equal to the work done by the frictional force
exerted by the road, acting through the displacement of the
car. Yet the frictional force does no work, and the car’s
kinetic energy comes from the burning of gasoline, not
from the road.

When a block slides down an incline with friction, it is
often said that the kinetic energy is equal to the work done
by gravity minus the work done by the frictional force. Yet
one knows that the block gets warmer, and there is the
uneasy feeling that this increase in thermal energy ought to
appear explicitly in the work—energy equation.

These mechanics problems are representative of a gen-
eral class of situations involving systems which cannot be
treated as point particles. The uneasiness provoked by such
problems is only partially offset by the fact that one often
seems to get the “right” answer. The goal of this article is to
resolve the ambiguities and deepen our understanding. A
new approach not only can clarify such situations but can
also improve the connections between the introductory
mechanics course and the following thermodynamics
course.

II. PSEUDOWORK

Erlichson' and Penchina® have pointed out that we fre-
quently do not properly distinguish between the work—en-
ergy equation of mechanics and a particular integral of
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Newton’s second law. Take the second law for a system of
particles,

2 Flp = Macu,

and integrate through a displacement of the center-of-mass
point (interchanging summation and integration):

d
J. (E Fiex.m,) drem = f Y ials o) drey;
dt
2 (j Fiex.ema. : drCM) =4 (4 MUZCM ).

Penchina calls the term on the left-hand side the total
“pseudowork.” It is not equal to the total real work done on
the system, because the forces have been multiplied by the
center-of-mass displacement rather than by their individ-
ual displacements. The right-hand side of the equation is
not in general equal to the kinetic energy change of the
system, since it involves only the center-of-mass speed. The
term § Mz, is sometimes called “the kinetic energy of the
center of mass.” Although “pseudowork—energy equa-
tion” is a good name for this relationship, it has been found
useful for teaching purposes to call it the CM (center-of-
mass) equation. This name emphasizes that the equation
does not really deal with work and energy but is associated
with center-of-mass quantities.

The displacement dr; of the point of application of the
ith force is not necessarily equal to the displacement dr.y,
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of the center-of-mass point, so that for the ith force

pseudowork; # work;.

For point particles dr; = drc,,, the pseudowork equals the
work, and the energy of a point particle is purely kinetic, so
that the CM and work-energy equations are equivalent.

If one starts from the x component of the equation of
motion, one finds

Z(J Fx,iemm, dxCM) =4 (% MU)Zc,CM )s

with similar equations for y and z. The algebraic sum of
these three equations yields the full CM equation.

II1. ILLUSTRATIVE EXAMPLE

The differences between the CM equation and the work—
energy (WE) equation can be appreciated by writing both
equations for a variety of situations. Consider a cylinder
rolling without slipping a distance d.,, down an incline
(Fig. 1). Take the cylinder as the system, so that Mg is an
external force applied by the Earth to the cylinder:

CM, cylinder: (Mg sin 6 — f)dcy = 4 (§ Mugy),
WE, cylinder: (Mg sin @)dcy = A (L MvZy) + 4 (4 1)

Both of these equations are correct. Each gives different
kinds of information, so one or the other may be more use-
ful in determining certain aspects of the motion. Notice
that the frictional force appears in the CM equation, since
it contributes to the resultant force (Mg sin 8 — f), but it
does not appear in the work—energy equation. The point of
application of the frictional force is at the rolling contact
point, which is always instantaneously at rest. Hence the
frictional force acts through zero distance and does no
(real) work, though it can be said to perform an amount
— fd\ of pseudowork.

Also note that the rotational energy term is missing from
the CM equation, since the CM equation, despite appear-
ances, is not really an energy equation. The CM equation is
merely the spatial integral of

z Fiexlemal = MaCM

and deals not with energy but with the motion of the (math-
ematical) center-of-mass point. If each force acts on a sys-
tem through a displacement equal to the center-of-mass
displacement, then the CM and WE equations are the
same. One example of such a system is a point particle.
However, the frictional force and the gravitational force
act on the rolling cylinder through different distances, and
this leads to differences between the CM and WE equa-
tions. Such differences can arise for deformable systems
and also for rotating rigid systems.

If we include the Earth in our chosen system, the Mg

S~ Fig. 1. Cylinder rolls without slipping down

o~ d an incline.
Fem
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force is no longer an external force and the work—energy
equation becomes

WE, universe: 0=4 (} MvZy)+ 4 (1 Io?)
— (Mg sin 0)d -

The Mgh term appears on the right-hand side as (negative)
change in the gravitational potential energy when we
choose the universe as the system of interest, but it ap-
peared on the left-hand side as positive work when we
chose the cylinder as the system. We will see later that it is
important to be very clear about the choice of system, since
it is external forces that perform the external work which
appears on the left-hand side of the work—energy equation.
As Penchina says, application of both the CM and WE
equations helps students better understand and appreciate
work and energy. Similarly, writing the WE equation for
more than one choice of system illuminates the difference
between work as a process and energy as a change of state.

IV. ENERGY EQUATION

Next consider an accelerating car. Let it be an electric
car to avoid questions of air intake and of exhaust. Take the
car as the system (Fig. 2), and ignore air resistance. The
forces f; and f, represent the total forces on the rear and
front wheels. These forces do no work, since the point of
application of these forces has no displacement if the
wheels do not slip. The CM equation predicts how these
forces change the center-of-mass velocity:

CM:  (f; + filow = A (§ Mukyy).

This CM equation 1is precisely equivalent to
fi +/» = Mac,,, from which it was derived. The frictional
forces make possible an acceleration of the center of mass,
but they do no work, and the left-hand side of the CM
equation is not the work done on the car. Similarly, the
right-hand side of this CM equation contains not the ener-
gy of the car but only the “kinetic energy of the center of
mass.” The full energy of the car includes several other
terms. The energy equation for the car is the following (neg-
lecting air resistance):

Qnet = A (% MvéM) + A KEinternal
+ AEthermal + AEbattery .

Q... is the net heat transfer into the car from the surround-
ings, consisting mainly of (negative) heat transfer from the
hot engine to the air and from the hot tires to the cooler
pavement. 4 KE, ... represents the increased energy of
motion of the internal parts of the car, including the engine
and the wheels. AE,, ... is associated with the tempera-
ture rise of the engine and battery (friction, ohmic heating,
and irreversible aspects of battery discharge). AEy ey is
the (negative) change in chemical energy which pays for all
the other terms in the equation.

Fig. 2. Car accelerates with the
wheels not slipping. Air resis-
tance is neglected.
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This energy equation comes from the general form
change in energy
of a system
(kinetic energy, gravitational
transfer, mass transfer, potential energy, chemical
radiation, etc.) energy, etc.)

For historical reasons this is called the first law of thermo-
dynamics, although the energy principle is pervasive
throughout science and is not really tied to thermodynam-
ics or to thermodynamics courses. It cannot of course be
derived from Newton’s laws, although it contains the pure-
ly mechanical work-energy (WE) equation as a subset of
the full possibilities. It would be natural to call it simply
“the energy equation.” However, at present the label
“work—energy equation” is often applied indiscriminately
in mechanics courses to the very different CM and WE
equations. For that reason it seems prudent to drop the
term “work—energy equation” entirely, and use two new
terms in the mechanics course: the CM equation and the
FLT (first law of thermodynamics). This terminology has
the additional advantage that the energy principleis known
as the first law in the thermodynamics course which nor-
mally follows the mechanics course. At some future date, if
the terminology “work—energy equation” is no longer
used, it would be sensible to rename the FLT simply “the
energy equation,” both in the mechanics course and in the
thermodynamics course. It should not be called the work—
energy equation, because work is only one of many pro-
cesses which can carry energy across the system boundary.

(There is a minor notational problem in the transition
from mechanics to thermodynamics. In mechanics it is nat-
ural to call work done on the system positive, writing
W = AE, whereas in thermodynamics we usually define
work done by the system as positive, due to the emphasis on
deriving useful work output from heat transferred into the
system, with Q =AU+ W. This notational difference
should be pointed out to the student in the thermodynam-
ics course.)

net external inputs
to a system =
{mechanical work, heat

V. ADDITIONAL EXAMPLES

Because the distinction between the CM equation and
the first law of thermodynamics has usually not been made
in standard textbooks, there is a shortage of relevant home-
work and exam problems in this area. Some useful prob-
lems have been invented for a computer-based mechanics
course’~® which attempts to treat the energy topic compre-
hensively. These problems will be summarized here both to
further illustrate the principles and to stimulate others to
develop additional helpful problems.

The common theme of these problems is a change of
shape of the chosen system, which may consist of several
bodies. This may involve, for example, an unwinding chain
or a mountain climber scaling a cliff (where there is a grow-

Fig. 3. Two pucks on a frictionless
table accelerate from rest. The
point of application of the force
goes farther than the center-of-

F 8>a F R
v mass point.
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Fig. 4. Chain at rest in a small heap on a frictionless floor is opened out by
pulling with a constant force. The force moves farther than the center of
mass does.

ing separation of climber and Earth in a system containing
both). We begin with three examples where there is little or
no configurational energy associated with the deformation
of the system.

An exam problem by Michael Weissman involved two
pucks tied together and lying at rest on a frictionless table.
The center of the string is pulled with a constant force per-
pendicular to the string as shown in Fig. 3, and the pucks
collide inelastically. When the stuck-together pucks have
attained a speed v, we have the following equations (where
FLT stands for the first law of thermodynamics):

CM: Fdcy = J2m)’,
FLT: Fd =}2mp* + AE.

The external force acts through a distance d greater than
d o, the distance the center of mass moves. The term A E is
the increase in internal energy, corresponding to the me-
chanical energy lost to other forms during the inelastic col-
lision. (If there is significant radiation of sound or heat, or
thermal conduction to the table, these transfers should ap-
pear as negative quantities on the left-hand side of the FLT,
though here they have been lumped into the term AE.)
Typically, the student is asked to find v and AE, given F, d,
and the lengths of the strings.

A related problem involves uncoiling a uniform chain of
length L made of metal links. The chain initially is bunched
up in a small heap (Fig. 4). A constant force pulls the chain
across a frictionless floor. The chain reaches a speed v after
opening out completely:

CM: F(d—L/2)=}md
FLT: Fd=}mv’+ AE.

Again, AE is the increase in internal energy of the chain
(neglecting energy transfers out of the system) and can be
thought of mainly as related to an increase in temperature
of the chain after inelastic collisions among the links of the
chain have damped down. From the CM and FLT equa-
tions the student may be asked to determine v and AE.

For a third problem, consider two identical blocks ini-
tially at rest on a frictionless table, pulled away from each
other by equal forces (Fig. 5). Take the fwo blocks as the
system of interest:

CM: (f—f)Axcem = %(Zm)véM =0,
FLT: 2fd = 2(} mv®)

Uem remains zero, and the center of mass does not move.
Each block does acquire a speed v. Clearly, work is done on

0 O

d d

Fig. 5. System composed of two blocks at
rest is pulled apart by equal and opposite
forces. The center of mass does not move.
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Mg
Fig. 6. Jumper leaps up from a
crouching rest position. The normal

Mg
dem
force exerted upwards by the floor

! does no work, since there is no dis-
N

placement of the contact point.

the system of the two blocks, but there is no change in vZ,,.
This problem can be used to illustrate to the student in a
very simple situation the major differences between the
CM equation and the FLT. Similar problems are the sym-
metric stretching of a spring, or a weightlifter slowly rais-
ing a barbell (the Earth and barbell being the chosen sys-
tem). In each of these cases the net force is zero, so the
center of mass does not accelerate, but the individual forces
do work. Consideration of such processes can lead in a
natural way to the introduction of the concept of potential
energy.

Next we consider systems where configurational energy
is important. A rich class of such examples involves men
and women jumping or climbing. If there is no slippage
between foot or hand and the supporting surface, the sup-
port forces though large do no external work on the person.
Consider a jumper who leaps straight up from a crouching
position, with the center of mass rising d.,, at the moment
of liftoff (Fig. 6). N is the average value of the force of the
floor exerted upward on the jumper’s foot during contact.
Nelgect heat transfer to the air.

CM: (N — Mgldey =L Mit,,,
FLT: — Mgd.y,
= % MvéM + A KEinternal + AEthermal + AEchemical .

Because the CM equation involves W, it can be used to
estimate the required strength of the floor, about which the
FLT says nothing. 4 KE,,,..,..; includes flailing of arms and
legs. AE ... Tepresents the temperature rise of the body
prior to heat transfer to the surrounding air. 4E ;. icq 1S
negative and represents payment for the other terms. If we
take the universe as the system, the Mgd_,, term appears
on the right-hand side of the FLT equation as increased
gravitational potential energy due to increased separation
of jumper and Earth. In that case, no work is done on the
system. The student can be given d,,; and the final height
to which the jumper rises, from which can be calculated the
average normal force exerted by the floor. The FLT can be
used to calculate the change in the internal energies of the
jumper, which gives a minimum value for the chemical
energy expended.

A climber inches slowly up a vertical cliff. The cliff exerts
upward forces and also applies couples (Fig. 7). Taking the
climber as the system of interest we have

CM: (fy+/fo—Mgldew =0,
FLT: — Mgch — Qloss = AEchemical .

The forces exerted by the cliff do no work, since without
slippage the point of contact does not move. The climber
burns chemical energy to compensate for the negative work
done by the external Mg force and for the heat transfer Q, .
to the air. Again, if we take the universe as the system the
Mpgd,, term appears on the right-hand side as change in
gravitational potential energy, and the Q, . term appears
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Fig. 7. Climber moves slowly up a vertical cliff. The
cliff applies forces and couples to the hands and feet
but does no work, since there is no displacement at
the contact points. The Earth does negative work
on the climber.

on the right-hand side as increased thermal energy in the
atmosphere. The student can be asked about the sum of the
chemical energy and heat transfer terms.

One frequently hears statements about such a situation
that “the climber does work to increase his gravitational
potential energy.” There is no system on which the climber
does work, since the cliff and the Earth do not move. Also,
one can properly speak of “gravitational potential energy”
not of the climber alone but only in terms of separation of
climber and Earth in the larger system. It is unfortunately
very common to speak of the gravitational potential energy
of a person or of a falling rock, but such statements really
should be avoided, since the Earth must be included in the
system. Lack of clarity on this point leads students to make
the mistake of putting the mgh in twice when analyzing a
falling rock: mgh = A KE — mgh. Here the student has
mixed two different choices of system, the rock alone {on
which the Earth does external work mgh ) and the universe
(in which there is a change of gravitational potential energy

— mgh ). Avoiding this kind of double-entry mistake is
helped by analyzing a problem with two or more different
choices of systems. It is just as important in work-energy
problems as it is in force—acceleration problems to be clear
about the choice of system. Emphasizing choice of system
and the use of freebody diagrams in the work—energy part
of the mechanics course provides another opportunity to
practice these important concepts.

Similar remarks apply to the way in which PE = mgy is
derived. One should be very careful to distinguish between
the two choices of system (rock alone, or rock plus Earth).
Indeed, it is the comparison of the energy relations for
these two systems from which one can determine the poten-
tial energy change.

A sprinter accelerating or a woman walking upstairs in-
volves contact forces on the feet which do no work on the
person. In some ways foot locomotion is a better introduc-
tion to forces which accelerate but do no work than is the
car example, since the motionlessness of the bottom of a
nonslipping wheel is much harder to grasp than the nonslip
action of the walking or running foot.

Some recent textbooks have brief sections dealing with
the CM equation. For example, a 1981 revision of the popu-
lar textbook by Halliday and Resnick’ includes a new sec-
tion (pp. 137-140) on this topic. The examples in the text
and the homework problems include a woman jumping up-
wards, a car decelerating without slipping, an astronaut
pushing away from a spaceship, and an ice skater using his
hands to stop at a wall. These are all examples of a contact
force acting through zero distance.

One might protest that the distinctions brought out by
such problems are overly pedantic. This is partly a matter
of taste. But generations of physics teachers have been care-
ful to explain to students the precise technical meaning of
the word “work,” and that holding a book at arm’s length
may be tiring but you are doing no work on the book. If we
can be careful about this trivial case, we should be even
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more careful, not less, when discussing the more compli-
cated cars and climbers that show up throughout the me-
chanics course.

Moreover, if these distinctions are not made one obtains
unphysical results when frictional forces do work. As will
be shown in a forthcoming article,? frictional forces gener-
ally act through a distance which is less than the displace-
ment of the center of mass. In rolling without slipping, the
frictional force acts through zero distance and does no
work. For a block sliding on a table, deformation of the
rubbing surface causes the effective displacement d ;. of the
frictional force to be less than the center-of-mass displace-
ment d.y. The resulting difference between the
pseudowork — uNd.y, and the real work — puNd 4 is nu-
merically equal to the rise in the thermal energy of the
block.

VL. PEDAGOGICAL AND PHILOSOPHICAL
ISSUES

It has been standard practice not to mention the first law
of thermodynamics in mechanics courses. The work—ener-
gy equation is treated on a purely mechanical level, with
considerable formal attention paid to external and internal
forces, to conservative and nonconservative forces, and to
mechanical potential energy. This approach has serious
drawbacks. It is overly formal for an introductory college
mechanics course, it does not permit the application of en-
ergy relationships to very common problems usually treat-
ed in mechanics courses, and it produces an artificial and
unnecessary separation between mechanics and thermody-
namics. The main justification for this practice is that it
leads to treating both mechanics and thermodynamics as
self-contained axiomatic systems, thus providing practice
in manipulating formal structures and reflecting the histor-
ical development of both subjects. However, we have seen
that Newtonian mechanics alone is not in fact a consistent
system for handling the energy aspects of many situations
which have traditionally been treated in the mechanics
course.

It is certainly possible to restrict the mechanics course
solely to Newtonian mechanics, but in that case there are
two reforms that should be made. First, the CM and work—
energy equations should be carefully distinguished from
each other, since otherwise our careful definitions of work
and energy are compromised. Second, those situations
whose energy relationships involve more than Newtonian
mechanics should be removed from the course: accelerat-
ing cars, inelastic collisions, people climbing or jumping,
blocks sliding down inclines with friction, etc. This would
be a very heavy price to pay, yet it is a price which must be
paid to keep the axiomatic approach at least consistent
within itself.

Given the stringent limitations of a purely Newtonian
mechanics course, it seems far more important to teach
Pphysics than to restrict ourselves to teaching rational me-
chanics. We often mention special relativity in 4 mechanics
course, even though Einstein lived long after Newton. We
should not hesitate to introduce the first law of thermody-
namics when it is needed, even though this energy principle
emerged in the 19th century and cannot be derived from
Newtonian mechanics. Students accept the FLT easily, be-
cause it seems so reasonable from everyday experience, in-
cluding frequent discussions of energy gain and loss. Intro-
ducing and using the FLT by name in the mechanics course
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provides a solid foundation for the later study of thermody-
namics, where the FLT will appear as something familiar
rather than as a correction to an incomplete mechanical
work—energy equation, or even as an entirely new concept.

Changing the approach to work and energy will require
significant effort. The potential rewards are great, how-
ever, in breaking down some of the present isolation of
mechanics from thermodynamics. Moreover, it is possible
to draw significant dividends within the mechanics course
from investments made in dealing more comprehensively
with energy. During the energy portion of the course we are
able to discuss examples of the FLT involving rotating ob-
jects, where we simply refer to the rotational kinetic energy
as KE,,, not yet being able to calculate it explicitly. For
example, the CM and FLT equations for a cylinder rolling
down an incline can be discussed at an early stage. This
makes it possible later to draw upon this experience when
introducing the kinetic energy of rotating objects, and the
moment of inertia. The use of the CM equation and the
FLT makes it feasible to attack a wide range of rotation
problems after having merely introduced | J»* and rota-
tional kinematics, leaving until later the more subtle con-
cepts of torque and angular momentum. This gets over the
hurdle so common to the topic of rotational dynamics of
having to introduce a large number of new concepts all at
once, in order to be able to do anything new and interesting.
I acknowledge a debt to James H. Smith for pointing out
the advantages of energy techniques in introducing rota-
tional mechanics.

VII. CLOSING REMARKS

My own concern with these issues began in 1971 when
Lynell Cannell and I became very confused about missing
thermal energy terms in what we now recognize as the CM
equation. This was in the context of her starting to write a
computer-based lesson on work and energy, and we found
the requirements for extra clarity in the computer-based
education medium a great stimulus to sorting things out.
Our colleague James Smith came to the rescue with the
basic explanations elaborated upon in this article. Over the
ensuing years a great deal of experience has been gained in
reorienting our teaching of work and energy. Some of this
experience is reflected in a computer-based lesson on work,
energy, and the CM equation, and in its accompanying
problem set. These arid related concerns have also led to
increased emphasis on freebody diagrams throughout our
computer-based course.’

It must be admitted that our attempts to treat work and
energy comprehensively have not been completely success-
ful. Students do find the topic difficult. It is observed that
the first law of thermodynamics leads to few conceptual
difficulties, but the CM equation strikes the students as
rather mysterious. Perhaps this is a reflection of the fact
that the foundation of the CM equation, Newton’s second
law for a system of particles (2 F,,, = May ), is in fact
rather mysterious, since it relates the motion of the center
of mass to forces applied at points which may be far from
the center of mass.

The difficulties students have with the new presentation
may be understood in part as being no different from com-
parable difficulties with other parts of the mechanics
course, such as rotational motion and angular momentum,
but partly the difficulty lies with the newness of the ap-
proach. The standard textbooks have not handled the topic
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in this way. Moreover, as was mentioned earlier, examples
and problems which bring out the issues have not been
included in textbooks and are not part of every physics
teacher’s set of teaching methods. Senior faculty members
and graduate teaching assistants, having studied the mate-
rial in a very different way when they were undergraduates,
need assistance in presenting things the new way. In short,
there is a lack of instructional infrastructure to support the
revised treatment of work and energy. In order to remedy
this situation we have not only used computer-based mate-
rials and (in preliminary form) a new textbook'® but have
also held special seminars for staff.
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Timing the flight of the projectile in the classical ballistic pendulum

experiment
F. C. Peterson
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An apparatus has been designed and constructed to measure the time of flight of the projectile
fired by the Blackwood pendulum apparatus. Microphones mounted on the pendulum base and
on a metal target plate yield signals, which after amplification and shaping by custom designed
circuitry, start and stop a commercial digital timer. The purpose, use, and design of these

accessories are described.

For many years, students in the algebra-based introduc-
tory physics sequence at Iowa State have performed a bal-
listic pendulum experiment with traditional apparatus.' It
has been our experience that while this experimient illus-
trates quite well several important principles and is enjoyed
by our students, it is a relatively brief exercise. Recently, as
part of the development of a new laboratory for our calcu-
lus-based sequence we have redesigned some aspects of this
experiment to increase the diversity of measurements that
the students make. Specifically, we have designed an appa-
ratus which provides a signal to start a commercial digital
timer when the spring gun is fired and a second signal to
stop the timer when the ball strikes the floor. Students use
this equipment to measure the time of flight of the ball.
From this, they calculate the ball’s horizontal velocity, a
result which is then compared with that obtained from the
pendulum measurements. In the traditional procedure, the
time of flight of the ball is assumed to be the same as that for
aball simply dropped from the same elevation as that of the
gun. Students would normally measure the elevation of the
gun and calculate the time of flight rather than measure it
directly. We have also designed a simple fixture which pro-
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vides a signal to start a timer when the ball is dropped from
rest. This additional apparatus enables the student to time
the free fall of the ball from any desired height. Thus, in
addition to permitting a more direct determination of the
velocity of the projectile, these accessories also make possi-
ble a direct test of the assumption that the time of flight of a
projectile over a level surface is independent of its initial
horizontal velocity.

Unlike previously reported apparatus to measure the
time of flight of a projectile,>™ the accessories that we have
designed make use of microphone cartridges. Signals from
the microphones, after amplification and shaping, provide
start and stop signals for a commercial digital timer.” We
make use of low-cost replacement cartridges for dynamic
microphones,® one of which is mounted with epoxy to the
underside of the metal base of the pendulum apparatus,
directly under the gun. A second is epoxied to a 1.9-mm-
thick (14 gauge) galvanized steel plate which is placed on
the floor at the location where the ball is expected to strike.
The microphone is mounted near one corner of the plate
and housed within a rugged steel electronics box for protec-
tion from the projectile. A phono jack is mounted on both
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