Work and heat transfer in the presence of sliding friction
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The work done by frictional forces has usually been calculated incorrectly. The key to a correct
treatment lies in making a careful distinction between a purely mechanical integral of Newton’s
second law on the one hand and the first law of thermodynamics on the other. These two
equations are the same for point particles but differ for deformable systems, which include
systems subject to sliding friction. A model-independent calculation is supplemented by
applications to current models for friction. Heat transfer is treated in detail for the case of
lubricated friction. Rotational friction is analyzed. An invariant form of the energy equation is

presented.

I. APARADOX

There is an apparent paradox in the traditional treat-
ment of work and energy in the presence of sliding friction.
Suppose a block is dragged at constant speed across a table
with friction. The applied force facting through a distance
d does an amount of work fd. The frictional force uN is
equal to £, since there is no acceleration. It would seem that
the frictional force does an amount of work

— puNd = — fd. The total work would be fd — fd = 0. For
a point particle, the work done is equal to the change in
kinetic energy,

f—fi=0=A3M)

which shows that the speed v does not change. This is con-
sistent with there being no acceleration, so this all seems
correct.

Yet there is something terribly wrong here. Where is the
energy term representing the increased internal energy of
the block? The block warms up due to friction, and the
increase in thermal energy of the block can be measured by
calorimetry. The simple treatment outlined above gives the
right answer for the change in speed of the block, yet the
work-energy equation does not contain a term representing
a major energy change in the system. This paradox can be
resolved, and a more detailed picture of friction emerges in
the process. In Sec. VIII this new approach is applied to a
typical homework problem involving friction, and it is
shown that the traditional analysis found in most textbooks
is incorrect.

II. THE CM EQUATION

The key to the paradox lies in the difference between the
true energy equation, called for historical reasons the first
law of thermodynamics, and the “pseudowork-energy”
equation or “CM” (center-of-mass) equation.’”®> The CM
equation is a spatial integral of Newton’s second law for a
system, obtained by integrating through the displacement
of the center of mass:

2F o = Macu, (1a)
d
I(EFx )' drCM = Mf Yeu * drCM’ (1b)
- external dt
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This CM equation looks seductively like an energy equa-
tion, but it deals with center-of-mass quantities. It does not
include rotational or vibrational energy, nor nonmechani-
cal forms of energy such as thermal or chemical energy.
This derivation can also be carried out just for the x, y, or z
component of Newton’s second law, yielding three sepa-
rately valid equations whose algebraic sum is the CM equa-
tion. The separate validity of these three equations pro-
vides an additional proof that the CM equation is not really
an energy equation, but is more closely related to momen-
tum.

When a block is dragged at constant speed across a table,
the distance the block moves is the displacement d -, of the
center-of-mass point, and the CM equation for the process
is

(f—Sfldcy =0=4 (WU?:M) (2)

This CM equation is equivalent to Newton’s second law for
the process, (f — f) = 0 = Macyy, which also shows that
U IS constant. A start on resolving the paradox concern-
ing the block is the recognition that what we originally
thought was an energy equation was actually the CM equa-
tion.

Since it springs from the purely mechanical second law
of Newton, the CM equation for the sliding block does not
yield any information about the rise in thermal energy of
the block, nor about possible heat transfer between the
block and its surroundings. To describe these energy
aspects of the process, we must invoke the first law of ther-
modynamics, hereafter abbreviated as the FLT. The CM
and FLT equations together give a more complete picture
of the process than either of them alone can give.

A highly symmetrical situation will be considered in de-
tail. This will lead to a surprising conclusion which is total-
ly independent of any particular model for sliding friction.
Specific models of friction will then be used to illustrate
how this unusual model-independent result comes about in
practice.
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Fig. 1. Two identical blocks slide across each other with friction, at con-
stant speed. Viewed from the inertial frame of the lower block, the force on
the left does no work, and the force on the right does an amount of work
fd. The vertical forces are applied by thermally insulated rollers, and the
system is in deep space, away from significant gravitational forces.

III. A MODEL-INDEPENDENT CALCULATION

Consider a very simple and highly symmetrical situa-
tion. Two identical blocks are pulled at constant speed
across each other (Fig. 1). For the sake of absolute symme-

try, let the experiment be carried out in deep space away

from gravity, with the normal forces N applied by thermal-
ly insulated rollers on the outer surfaces of the two blocks.
Assume the total displacement is small compared to the
length of the blocks (or equivalently that the blocks are very
long), so that conditions are hardly changing (e.g., area of
contact and amount of overhang). Alternatively, one could
consider a ring rotating on a similar ring, to insure constant
mechanical conditions.

We choose to observe the motion from a frame moving
with the lower block, so that the lower block is stationary in
our inertial reference frame. Take both blocks as the system
to be analyzed. The center of mass moves a distanced /2 as
the upper block moves a distance d. Since the lower block
does not move, the force on the lower block does no work,
but it does appear in the CM equation:

CM: (f—f)id/2)=A [{2mli ] =0, (3a)
FLT f d = AEthermal, upper and lower blocks * (3 b)

The CM equation is uninteresting (0 = 0, since v, is con-
stant). The FLT shows that the external work goes into
heating the two blocks. By symmetry, half of the increase in
thermal energy will appear in the upper one of the two
identical blocks. Calorimetry would show an increase of
fd /2in the thermal energy of the upper block (assuming all
the work eventually ends up as thermal agitation).

Notice that the differences between the CM and FLT
equation are due to the fact that the two-block system is
deformable. The work done by each individual force in-
volves the individual displacement of the point of contact
of each force. The force on the upper block moves through
a distance d and does an amount of work fd, whereas the
force on the lower block moves through zero distance and
does zero work. In the CM equation, however, each force is
multiplied by the same center-of-mass displacement. Simi-
lar differences can occur with rotating systems. For exam-
ple, consider a cylinder rolling without slipping down an
incline. The frictional force appears in the CM equation but
not in the FLT, since the point of contact does not move.
Equivalently, one can say that the two equations can differ
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Fig. 2. The freebody diagram for the upper block alone. The force on the
right does an amount of work fd, but the frictional force f to the left only
does an amount of work — fd 4. It turns out that d,4 is less than d.

if the system has internal structure with the possibility of
changes of internal energy (brought about by forces which
deform or rotate the system, or by other kinds of energy
transfer). See Sec. X for additional discussion of this point.

Next choose just the upper block as the system (Fig. 2).
To be very specific, we choose as the system of interest all
those atoms pertaining to the upper block, and for simpli-
city we assume none of these atoms rub off and separate
from the block. This is a legitimate choice of system by the
usual rules for handling freebody diagrams. The equations
for the upper block alone are

CM: (f—f)d=4 (Jmviy) =0, (4a)
FLT: fd _fdcﬂ' = AEthermal, upper block =fd /2 (4b)
Again, the CM equation is uninteresting, since we move at
constant speed.

The FLT, however, is most intriguing. The force f to the
right does an amount of work fd. The frictional force to the
left does an amount of work — fd 4, and we will find a
surprise in the effective displacement d.4 through which
the frictional force works. The net work goes solely into
increasing the thermal energy of the upper block, and we
know this increase is fd /2, since we found that the total
thermal energy rise in the two blocks together is fd. There is
no net heat transfer into the upper block because the two
blocks are identical: By symmetry any heat transfer from
lower to upper is equal to the heat transfer from upper to
lower.

If we solve the FLT for the effective displacement
through which the frictional force works, we find

dge=d/2 () (5)

How can this be? This unexpected result can be understood
in the context of the standard theory of dry friction,** al-
though the calculation in this highly symmetrical situation
is not model-dependent.

IV. DRY FRICTION

When a metal block slides on a metal surface, the block is
supported by as few as three protruding “teeth” (called
“asperities” in the literature on friction). The very high
load per unit area on these teeth causes plastic yield, and
high local temperatures produced during sliding lead to
adhesion (welding) in the contact regions. The frictional
force divided by the tiny contact area corresponds to the
large shear stress required to break these welds. This shear-

B. A. Sherwood and W. H. Bernard 1002



Fig. 3. (a) A stylized microscopic view of friction, with a greatly exaggerat-
ed vertical scale. Teeth belonging to the upper and lower blocks have
welded together at their contact point. The shear strength of the contact is
the origin of the frictional force. (b) The upper block is pulled to the right a
distanced, but the contact point only moves a distance d /2. The frictional
force £ does an amount of work — fd /2.

ing of contact welds is the dominant friction mechanism for
a dry metal sliding on the same metal.

Because the tooth tips can become stronger than the bulk
metal due to work-hardening, shearing often occurs in the
weaker regions of the teeth, away from the tip. This is a
major effect when the two objects are made of the same
material, and chunks of metal break off and embed in the
other surface, Nevertheless, this wear will be ignored in the
discussion. It is in any case a symmetrical effect for identi-
cal blocks. If the metal surfaces have oxide coatings, this
can reduce the shear stress required to break the temporary
weld (which can reduce the coefficient of friction) and can
prevent the breaking off of chunks of metal, if the oxide
contact area is the weakest section.

Having briefly summarized the model of dry friction de-
veloped by Bowden and Tabor,** we proceed to use this
model to calculate the work done by frictional forces exert-
ed at the contact points.

Figure 3(a) shows in a stylized way two teeth which have
temporarily adhered to each other. The vertical scale has
been greatly exaggerated for clarity: machined surfaces
have much gentler slopes. In Fig. 3(b) we see that when the
upper block has moved a distanced to the right, the point of
contact has moved a distance of only d /2, because the teeth
of the two identical blocks are made of the same material.
The time average of the contact forces is indeed f (as indi-
cated by f— f= Macy ), but the effective displacement is
only half the displacement of the center of mass of the up-
per block.

Once the weld has broken the teeth can vibrate. The vi-
bration of the tooth belonging to the upper block and ther-
mal conduction upward from the hot tip into the main
body of the block contribute to the fd /2 increase in the
thermal energy of the upper block. Similarly, vibration and
thermal conduction in the tooth belonging to the lower
block end up as fd /2 increase in the thermal energy of the
lower block.

Having two long teeth in contact as shown in Fig. 3 is
rather unphysical. A better picture is that of Fig. 4(a) (again
with a greatly exaggerated vertical scale), where we show
one of the upper block’s longest teeth in contact with the
average surface level of the lower block, and one of the
lower block’s longest teeth similarly in contact with the
average surface level of the upper block. The two teeth
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Fig. 4. (a) A more realistic picture of friction, in which the two teeth shown
represent time and space averages of the contacts between the identical
upper and lower blocks. The frictional force fis divided on the average
into f/2 applied at the upper contacts and /2 at the lower contacts. The
vertical scale is greatly exaggerated. (b) The upper block is pulled to the
right a distance d. The upper contact point also moves a distance d, but the
lower contact point does not move. Work done on the upper block by the
lower block is — (f/2)(d) — (f/2)(0)= —fd /2.

shown here are to be taken as representative of time and
space averages of the sliding friction. The frictional force f
exerted on the upper block is divided on the average into
two forces each of magnitude £ /2 at the ends of the two sets
of long teeth. In Fig. 4(b) we see that when the upper block
moves a distance d to the right the upper contact also
moves a distance d, whereas the lower contact does not
move at all. The frictional work is therefore { —f/2)
(0)+(—f/2)d), which is —fd/2= — fdg, s0 dy is
again d /2.

A common physical error in the treatment of this and
similar situations is to mistake the CM equation for the
upper block, fd — fd = 0, with the first law of thermody-
namics, fd — fd.; = fd /2. The basic deficiency of the CM
equation here is that it really has little to do with work or
energy. In particular, the CM equation pays no attention to
thermal energy. Yet everyone knows that the blocks get
hot, and one wonders why this physical fact is not reflected
in the equations. Notice that the CM and FLT equations
differ here precisely because the blocks are not point parti-
cles but are deformable, so that the various forces do not
share the same displacements at their points of application.
In the CM equation all forces are multiplied by the same
center-of-mass displacement, but in the FLT each force
contributes an amount of work proportional to the dis-
placement of its own point of application.

For contrast it is instructive to carry out the analysis in
the center-of-mass frame of the two blocks, instead of the
frame of the lower block. The point of frictional contact on
the average is stationary in this center-of-mass frame, so
d.qz = 0. The external forces both act through a distance
d /2. Considering the two-block system, each external
force f does an amount of work fd /2, and the total work fd
equals the thermal energy rise of the two blocks. If we con-
sider just the upper block, the external force f does an
amount of work fd /2, and the frictional force does zero
work (because the contact point does not move). The total
work fd /2 equals the thermal energy rise fd /2 of the upper
block.

It might be expected that in general d.; should be less
than the center-of-mass displacement of the block. How-
ever, if the upper block is analyzed in its own rest frame, the
frictional force exerted by the lower block acts through a
nonzero distance (4 /2) while the upper block does not
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move at all. A more interesting case is that of a block which
accelerates from rest on a conveyor belt. Until the belt
speed is reached, the sliding-friction force does positive
work on the block, and it can be shown that the frictional
force acts through a distance greater than the displacement
of the block. The explanation for this odd effect is that the
contact point of the friction force must move forward
ahead of the block’s motion, in order to accelerate the
block.

V. LUBRICATED FRICTION

For the highly symmetrical process involving two
blocks, the result d.; = d /2 was independent of the parti-
cular model of friction. Nevertheless it is interesting to see
that the same result is obtained in the case of lubricated
sliding. Figure 5 shows the two blocks separated by a film
of viscous lubricating oil, so that the two blocks do not
make direct contact. Fluid layers immediately adjacent to
the blocks are constrained to share the motion of the
blocks. For laminar Couette flow,® the displacement pro-
‘file in the oil is linear.

For symmetry (which eliminates the possibility of net
heat transfer across the system boundary), choose as the
upper system the upper block plus the upper half of the
lubricating oil. It can be seen that the shear force at the
midplane of the film acts through a distance which is half
the displacement of the upper block: d g = d /2. This is the
same result we obtained in our model-independent calcula-
tion and for the case of symmetrical dry friction (in the
framework of the Bowden-Tabor model). Of course, the
magnitude of the frictional force is much reduced by the
lubrication, and the applied force f must consequently be
much smaller if there is to be no acceleration. If we perform
the analysis in the center-of-mass frame of the two blocks,
the midplane of the oil is stationary. The upper block
moves a distance d /2, and the applied force f does an
amount of work fd /2, while the frictional force does no
work (since the midplane does not move; d.; = 0). The to-
tal work done on the upper system is fd /2, which is equal to
its thermal energy rise.

VL. HEAT TRANSFER

In the case of lubricated friction it is possible to under-
stand heat transfer in detail. Take the two-block situation,

Fig. 5. A viscous lubricating oil lies between the two blocks. The displace-
ment profile for Couette laminar flow is shown with the lower block sta-
tionary. Consider a system composed of the upper block and the upper
half of the lubricating oil. The fluid shear acting on the bottom of this
system acts through a distance which is half the distance through which
the upper block moves.

1004 Am. J. Phys., Vol. 52, No. 11, November 1984

with oil between the two identical blocks. To simplify, let
the thermal conductivity of the metal blocks be very high
compared to the oil, so that the temperature is nearly uni-
form throughout a block (and rising as the process contin-
ues). Also assume the mass of the blocks is very large com-
pared to the mass of the oil, so that almost none of the total
energy rise fd is in the oil—it is all in the blocks (fd /2 in
each). We will see how the work done on the upper system
by friction (W ;. ) and the heat transfer into the upper sys-
tem (Q ydepend on y, the position above the midplane where
we choose to draw the system boundary. Let the reference
frame be the center of mass of the two-block system. The
symmetrical case, y = 0, is characterized by W,. = 0 and
@ = 0. The upper block moves a distance d /2, and the ap-
plied force f does an amount of work fd /2. The total energy
transfer into the system is fd /2, leading to a thermal energy
rise fd /2 in the upper block.

Figure 6(a) shows the temperature T as a function of y,

T
4
(a)
; >
-2 +3z
Q
A
{b)
; } >y
-2 +3
E
A
fd/2
N Q
(<)
-y

\w

fric

Fig. 6. The temperature (a), heat transfer into the upper system (b), and all
energy transfers into the upper system (c) as a function of y, the location of
the system boundary above the midplane of the oil shown in Fig. 5. Note
that since the heat transfer Q is proportional to the negative gradient of the
temperature, the graph in (b) is simply the negative derivative of the graph
in (a).
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with the highest temperature at the midplane. Figure 6(b)
shows the heat transfer Q = ( — kAJdT /dy) X (time interval)
as a function of y, the location of the system boundary. (The
thickness of theoilisz,so — /2 <y < + t /2.)Inthesimple
case of uniform shear, there is uniform dissipation
throughout the fluid, so that the heat-transfer graph [Fig.
6(b)] is a straight line, and the temperature graph [Fig. 6(a)]
is a parabola. In any case, since Q is proportional to the
negative gradient of the temperature 7, the curve in Fig.
6(b) will be the negative derivative of the temperature curve
shown in Fig. 6(a).

Note that at the midplane 3T /dy is zero, and heat flow is
zero, corresponding to the symmetrical situation. Fory >0
heat transfer is positive, corresponding to flow into the up-
per system. For y < O heat transfer is negative, reflecting the
fact that heat transfer flows out of the upper system into the
lower oil and block.

Figure 6(c) shows all energy inputs into the upper system
as a function of y, the position of the system boundary. At
y= +1t/2, Wy, = — fd /2 because the frictional force f
acts to the left and the displacement d /2 is to the right. Q at
y= +t/2mustbefd /2, since the source of the fd thermal
energy rise in the two blocks is in the oil, where the energy
dissipation fd occurs. At y = — t/2, the frictional force f
acts to the left and the displacement d /2 is to the left, so
Wiie = +fd/2and Q = — fd /2 out of the upper system.
The FLT for several choices of y takes these forms:

fd /2 + Mﬁc + Q = AEupper system * (6a)

y=+1t/2: fd/24+(—fd/2)+(+fd/2) =fd/2,6
(6b)

y=0: fd/24+0+0=1d/2, (6¢)
y=—t/2 fAd/2+(+fd/2)+(—fd/2) =fd /2.
(6d)

Note that (W ;. + Q) is zero for any choice of the system
boundary y. Work and heat transfer have complementary
rolesin this process. Also note that since W, isjustf times
the displacement at the system boundary, the shape of the
W e curve (and therefore also that of Q) is the same as that
of the fluid displacement (a straight line in the specific case
considered here).

VIL DIFFERING MATERIALS

It is instructive to see what happens in the case of dry
friction if the two blocks are made of differing materials. If
the friction mechanism involves making and breaking of
welds, the distance d,; through which the friction force
acts can have any value between 0 and d (in the reference
frame of the lower block), because the amount of move-
ment of the contact point now depends on the relative stiff-
ness of the two teeth. Also, since the situation is now asym-
metrical, there may be a net heat transfer by thermal
conduction from one block to the other.

If the upper block is very hard and the lower block very
soft (Fig. 7), the dominant mode of friction can be “plow-
ing,”’ in which the hard teeth sink into the soft material
and plow through it. The frictional force exerted by the soft
material on the hard teeth acts through the same distance
as the motion of the upper block: d.; = d, and the work
done by the frictional forceis — fd. The FLT for the upper
blockis fd — fd = AE,,.. = 0, implying that the hard up-
per block does not get hot.

However, if the soft lower block becomes hotter than the
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Fig. 7. If the upper block is very hard and the lower block very soft, the
teeth of the upper block may plow through the soft material. The displace-
ment of the point of application of the frictional force is d, and the fric-
tional force does an amount of work — fd on the upper block.

upper block, some net heat transfer by thermal conduction
of amount @ across the system boundary can occur, out of
the lower block into the upper block. The work performed
on the upper block is fd — fd =0, while the work per-
formed on the lower block is fd. This makes the FLT for the
several systems appear as

Q = AEuppet (73)
fd - Q = AElower (7b)
f d =. AEupper + lower * (70)

In the asymmetrical case it is generally not possible to iden-
tify just the heat transfer term alone. In the case of lubricat-
ed friction we were able to show explicitly the complemen-
tary roles of work and heat transfer, but for dry friction this
is difficult to do. This difficulty does not affect the calcula-
tions in the case of identical blocks, since then Q = 0 by
symmetry.

At the other extreme, if the upper block is very soft and
the lower block very hard, the soft upper block is dragged
across stationary hard teeth (Fig. 8). In this case the contact
point does not move, and d,; = 0. The frictional force does
no work on the upper block. For the upper block we have
(f)d) — (F)0) = fd = AE,,,.,, and thesoft upper block gets
hot. Again, there can be some net heat transfer from the
hotter upper block.

It is worth mentioning here that Tabor’ objects very
much to our common usage of the words “rough” and
“smooth” to refer to surfaces with or without friction. He
points out that the modern understanding of friction shows
that the degree of surface roughness need not have much
correlation with frictional phenomena.

Fig. 8. If the upper block is very soft and the lower block very hard, the
soft upper block is dragged across stationary teeth. The frictional force
acts through zero distance and does no work on the upper block.
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Fig. 9. A block slides down an incline
with friction. The work done by the
frictional force is not — uNd.

VIII. TEXTBOOK EXAMPLE

A favorite problem in textbooks has a block sliding a

distanced down anincline with friction (Fig. 9). In this case -

the block’s hot teeth are continually encountering new,
cold regions of the incline, so that it is likely that there will
be net heat transfer |Q | out of the block into the incline. {In
the two-block situation, there was symmetry in such con-
tacts.) Taking the block as the system of interest, the rel-
evant equations are

CM: (mgsin @ —uN)d = 4 (jmv?), (8a)
FLT: (mgsin8)d — uNd.z — |Q|
= A (%mvz) + AEthermal of block * (Sb)

Students are often asked to calculate “‘the work done by the
frictional force.” However, since this quantity depends on
the unknown effective displacement d.4 of the frictional
force, the frictional work cannot be calculated. What is
really being asked for is the term — uNd, whereas the actu-
al work done by the frictional force is only — uNd_ 4.

A comparison of the CM and FLT equations yields

ﬂN(d - deﬂ') = AEthermal of the block + |Q I (9)

Since the right side of this relation is positive, this indicates
d.q will be less than d.

If we consider the universe (block, incline, and earth), we
have for the FLT

0=4 (imvz) — (mg sin 0)d + AE mai of block
+ AEthermal of inlcline * ( 10)
Comparing with the FLT for the block alone, we see that

AE g ermat o theviok = 4N (d —dg) — |Q] (11a)
AEthermnl of theincline — ,uNdeff + [Q ] (1 lb)
AE thermal of the universe — :u'N d ( 1 IC)

IX. ROTATIONAL FRICTION

There is a rotational analog of the CM equation. Starting
from the torque equation about the center of mass,

> Tiew = cma, (12)

and integrating through a rotation 6 one obtains the “rota-
tional CM equation,”

37,0 ) = | Iy 22 d0 =4 (3 Iwo®). (13)
I3 dt

Note that this is 707 an energy equation. It leaves no room
for thermal energy terms. The same rotation angle & has
been used for all the torques, whereas work done by exter-
nal torques is

w=3 (f e do,.), (14)
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and different torques Ti, MAay act through different rota-
tional angles 6,;.

Consider a wheel being rotated by an external motor on
an axle with friction. If 7,, = the torque applied by the
motor, 7, = the frictional torque applied by the axle, and
|@ | = the net heat transfer from the wheel to its surround-
ings (including the axle), we have

CM: (7, —7,)0 = A (M yo?), (15a)
FLT: 7,0 — 7,04 —|Q| =4 (Hcno?)
+ AEthermal of wheel * ( 1 Sb)

Due to deformation of the “teeth” where the wheel con-
tacts the axle, the effective (angular) displacement 8,4 of
the axle torque is less than the angular displacement 8 of
the wheel as a whole. We find by comparing the CM and
FLT equations that

Tal0 — Oeg) = AE pemar ot wheat + @ [- ' (16)

Note that a truly rigid wheel (all 0;’s the same) cannot ac-
count for friction.

X. THE IFLT, AN INVARIANT FORM OF THE FLT

Although the CM equation is correct in any inertial
frame, the numerical values of the various terms in the
equation vary from frame to frame, since the displacement
and velocity of the center of mass of the system obviously
depend on the choice of reference frame. These noninvar-
iant terms also appear in the FLT. However, subtracting
the CM equation from the FLT yields a version of the FLT
whose terms are invariant. This equation might be called
the invariant FLT, or IFLT. Let the point of application of
the ith external forcebercy + R;, sothat R, is the location
of this point relative to the center of mass. Then we have

FLT: zf Fiextemal '(drCM +d Rl) + Q

=4 (IMven) + AEpermas (17)
CM: z j Fiexternnl .drCM =4 (%‘MvéM )’ (18)
IFLT: ZJFiexm| d Ri + Q = AEintemal . (19)

AE, ... represents both macroscopic and microscopic en-
ergy in the rest frame of the system, and can be thought of
as the rest energy of the system. We used the IFLT implicit-
ly several times in this paper when we subtracted the CM
equation from the FLT to get at the interesting energetics
of a process. This induced us to identify the IFLT as being
of general interest.

In the IFLT the force integral involves only displace-
ments relative to the center-of-mass point, so this integral is
clearly independent of our choice of reference frame. Since
the internal energy change (or change in rest energy) is also
frame-independent, the IFLT shows that the heat transfer
Q is invariant. (Q may be considered a cover term for heat
transfer plus other nonwork energy transfers across the
system boundary, such as radiation or mass transfer.) The
form of the IFLT makes it easy to see that the FLT and CM
equations in the absence of heat transfer differ only if there
is deformation or rotation or, equivalently, if the internal
energy can change (implying an internal structure). One
may think of the IFLT as the energy equation in the center-
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of-mass frame, and it is valid even if the center of mass
accelerates.

Note that the IFLT relates meaningful energy transfers
across the system boundary to significant changes in the
internal energy of the system. In contrast, the CM equation
can be considered to describe merely the “kinematics” of
the center-of-mass motion, saying nothing about signifi-
cant energy changes inside the system. It is interesting to
note that if vy, ; and vy, are the initial and final velocities
of the center of mass in some inertial frame, the CM equa-
tion reduces to O = 0 in another inertial frame moving at a
velocity (Yo, + Yomys)/2. In this special frame the initial
and final center-of-mass speeds are the same, though the
direction of motion may differ.

The force integral in the FLT is of course referred to as
work. It has been suggested?® that the integral in the CM
equation be called pseudowork. Perhaps we should call the
force integral in the IFLT the “invariant work.” The rela-
tionship among these defined quantities is that work equals
pseudowork plus invariant work.

The IFLT offers a useful perspective on energy transfers.
For example, the invariant work performed by a frictional
force on a single block is positive, since the frictional force
acts in the same direction as the bending of a tooth (relative
to the center of mass). This positive invariant work is asso-
ciated with an increase in the internal energy of the block.
Depending on reference frame, the work done on a single
block by frictional forces in the FLT may be positive or
negative, but the corresponding invariant work is positive,
independent of frame. The IFLT, and the geometry of the
frictional contact point, can be used to generalize the re-
sults of Egs. (7c) and (11c¢), to show that the total internal
energy rise in two blocks sliding on each other is equal to
the absolute value of the product of the frictional force
times the relative displacement of the two center-of-mass
points. ‘

As another example, consider a skater pushing off from a
wall. The force exerted by the wall on the skater’s hand
does no work on the skater, because there is no displace-
ment of the point of application. In the FLT, the skater’s
increased kinetic energy comes at the expense of internal
energy.” The wall force does produce pseudowork, since
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the center of mass of the skater moves, and in the CM
equation this positive pseudowork is equal to the kinetic
energy increase. The wall force produces negative invariant
work, because the point of application of the force moves
away from the center of mass. In the IFLT this negative
invariant work is equal to the decrease in the skater’s inter-
nal energy (with a change of sign, one can say that the
skater does positive invariant work on the surroundings).
Here are several quite different perspectives on the same
process. It is a useful exercise to apply the IFLT to the
various problems treated in Ref. 3.
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