Fig. 2. Half of the energy which is moving within the field from left to
right flows back to the left through the plates of the capacitor.

section exerts on the part right of it. One might ask, how-
ever, where this force originates: How is the field able to
exert a force on the left side of the plates, and how can the
right part of the plates exert a force on the field? The
answer can only be: By means of the stray field. Indeed,
only the stray field at both ends of the plates has compo-
nents parallel to the plate direction and is therefore able to
pull outwards.!

Inserting (7) in (6) we get the energy flow within the
plates:

P"=—(ey/2) |E|*|vy |d. (8)

Now the energy balance is restored. Indeed, by using
Egs. (4), (5), and (8) it can be seen that

dw Prop

G =P
Half of the total energy current which goes from left to
right in the field flows back through the plates and the

other half serves to transfer the electrostatic field from left
to right, see Fig. 2. That part of the energy current within
the field which goes back through the plates has to make
180° turns within the stray field on the right side of the
capacitor in order to get into the plates, and it must make
additional turns when it leaves the plates on the left side of
the capacitor. Here again, one recognizes the importance of
the often neglected stray field.
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Although the work-energy theorem of pure, nondissipative mechanics states that the work done
stopping a body equals its kinetic energy change, the work done stopping a body via an inelastic,
dissipative collision can be zero. This counter-intuitive result is used to motivate the development
of thermodynamic ideas as a direct extension of classical mechanics. The approach leads to a
natural introduction of internal energy, the path dependence of work, and dissipation. It also
offers an opportunity for early exposure to powerful symmetry and frame-invariance arguments.
The main presentation addresses one-dimensional highly symmetric collisions, with a

generalization in the Appendix.

I. INTRODUCTION

Students of classical mechanics learn from the work-
energy theorem that negative external work is required to
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stop a moving object. In contrast, our intentionally pro-
vocative title suggests the possibility of stopping an object
while doing zero external work. Informal inquiries of col-
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leagues have shown us that many physics teachers find this
notion hard to believe. The second part of our title indi-
cates why the zero-work idea is hard to accept: it occurs in
a realm where both mechanics and thermodynamics are
involved. Evidently, physics teachers (and probably their
students) commonly make the default assumption that ob-
ject stopping is a purely mechanical process.

That this is not the case can be seen by considering an
idealized totally inelastic collision between a ball of putty
and a perfectly smooth, flat wall in a zero gravity environ-
ment. Because the wall is rigid, the forces on the ball per-
pendicular to the wall do zero work. And because there is
no friction, zero work is associated with any plastic dis-
placements of the ball parallel to the wall’s plane. There-
fore, the ball is stopped with zero external work. As the
ball slows down, parts of it continue moving toward the
wall and internal work converts bulk kinetic energy to in-
ternal energy, resulting in a temperature increase.

A significant body of literature on energy transforma-
tions in macroscopic systems already exists. Recently,
Arons’ gave an articulate and convincing exposition on the
need for thermodynamic ideas to correctly describe the
mechanics of macroscopic systems. He reviewed and elab-
orated on articles’> dealing with internal work, the

pseudowork-energy theorem (pseudowork is also called

center-of-mass work®), and sliding friction phenomena.
Arons wrote: “Since these papers...have not received much
attention and seem to have had little influence on the text-
books, I present this review...in the hope that it will gen-
erate somewhat wider interest and lead to a conceptually
sounder treatment of the energy concepts for beginning
students.” In an attempt to clarif}; these matters further,
we developed a taxonomy of work,’ identifying seven types
of work that can be done on a system of particles, showing
connections between them, and relating them to specific
energy changes. Other worthwhile contributions ranging
from the very definition of energy®® to the distinctions
between work, heat, and internal energy exist in the
physics-teaching literature.!®?> These efforts have influ-
enced our thinking and suggest that avoidance of thermo-
dynamics in discussions of mechanics misses an opportu-
nity to address familiar, fascinating, and essential aspects
of physics and gives students an incomplete and inadequate
view of our physical world.

In this paper, we motivate the development of thermo-
dynamic ideas as an extension of classical mechanics. Our
empbhasis is on a one-dimensional head-on, totally inelastic,
mirror-symmetric (in the center-of-mass frame) collision
between two bodies. This model offers a previously unap-
preciated and, to our knowledge, unexplored opportunity
for an early introduction to thermodynamics concepts in
an attention-grabbing context. It enables early student ex-
posure to the important concepts of internal energy, frame
invariance, path dependence of work, symmetry argu-
ments, and dissipation.

The remainder of this paper is organized as follows. We
show in Sec. II that pure mechanics cannot correctly de-
scribe the one-dimensional inelastic collision model and
prove, using a symmetry argument, that the external work
on each of the colliding bodies must be zero. In Sec. 111 we
then argue that a new term must be added to the work-
energy theorem in order to: (1) account for the internal
structure of macroscopic objects, and (2) explain the zero-
work result. We show in Sec. IV that this added energy
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Fig. 1. Head-on, totally inelastic collision between two mirror-symmetric,
equal-mass bodies in the center-of-mass reference frame. Initially the bod-
ies have equal and opposite velocities v and —v. During the collision both
bodies deform and slow down symmetrically. Note, in particular, that
during the collision the interface between the two bodies lies, at all times,
in the (CM) plane of symmetry. After the collision the bodies form one
object of mass 2m with zero velocity.

change has the same value in any inertial frame—an ex-
pected characteristic of an internal property—and can be
viewed as an internal energy change. We summarize and
interpret our main findings and their generalizations in
Sec. V and extend our analysis to general asymmetric, mul-
tidimensional two-body collisions with arbitrary inelastic-
ity in the Appendix. Readers who wish to scan the major
findings are directed to results 1-5 and the associated dis-
cussion in that section.

I1. A SIMPLE EXAMPLE WITH A COUNTER-
INTUITIVE RESULT

Consider a mirror-symmetric, totally inelastic collision
between two bodies in the system’s center-of-mass frame
(CM frame) as shown in Fig. 1. We assume the initial
direction of each body is horizontal and define mirror sym-
metry as left-right symmetry about a vertical plane
through the center of mass. This symmetry implies the
bodies have the same mass, m, equal and opposite initial
velocities (+v and —v), and mirror-inverted internal
structures with respect to the vertical plane. Because the
collision is totally inelastic and the total linear momentum
is zero, each body comes to rest during the collision. The
translational kinetic energy changes of the bodies are

AK =K~ K= —(1/2)m? (1a)
and '
AKy=K, — K= — (1/2)m?, (1b)

where the superscripts / and f stand for “initial” and “fi-
nal” and 1 and 2 refer to bodies 1 and 2.
The total change in translational kinetic energy for the
two-body system is
AK, =AK;+AK,= —mv*. 2)

Where does the initial kinetic energy go? The answer from
most teachers is likely to be something like, “to heat” or
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“to thermal energy.” Although not strictly wrong, these
replies mask a good deal of interesting physics, which we
now pursue.

The standard work-energy theorem of mechanics® re-
lates the total external work W, done on a body to its
translational kinetic energy change:

We.w=AK Work-energy theorem of mechanics.
(3)

Applying Eq. (3) to the bodies in this collision, where only
translational motion occurs, we find

Wen1=AK = —(1/2)mv?
and
Wexta=AKy=—(1/2)mv’. (4b)

Here, W, | and W, , are the works done on bodies 1 and
2, respectively, by bodies 2 and 1. The results of Eqgs. (4)
are consistent with the assumed symmetry of the collision,
which dictates that

Wext,l = Wext,Z ( 5)

We now make the additional assumption that the two bod-
ies interact exclusively via forces that act only at surfaces
in physical contact. The interface between the two bodies
forms a macroscopic “contact surface” which, in general,
can vary in size and shape during a collision. Two facts are
implied by the assumed symmetry (see Fig. 1). First, the
contact surface is confined at all times to the plane of
symmetry because any penetration through that plane by
either body would violate the assumed symmetry. Second,
the interaction forces must be perpendicular to the plane of
symmetry or Newton’s third law would imply an action-
reaction force pair that violates the assumed symmetry.
Therefore,

(4a)

By symmetry.

Wei1=Wei2=0 Zero-work result.

(6)

Equation (6) shows that each object does zero work while
stopping the other. This zero-work result reflects the fact
that the interaction forces are always perpendicular to the
displacements (if any) of the elements on which they act.
Unfortunately Eqs. (4) are incompatible with Eq. (6). We
shall see presently that the difficulty is with the work-
energy theorem of mechanics, Eq. (3).

The zero work result is physically “obvious” for the
special case where the two bodies move together (have
equal displacements) at each point on the contact surface;
i.e., when there is zero slippage. Then Newton’s third law
implies that

Wei1=—Weo Assuming zero-slip contact forces.

(7

The zero work result, Eq. (6), then follows from the com-
bination of the symmetry result, Eq. (5), and the assump-
tion of zero-slip contact forces.

Given the zero external work, what is the physical mech-
anism by which stopping occurs? It is simply that the net
external force F,,, ;(¢) on body 1 generates a correspond-
ing impulse,

I,= F i1 (2)dt=—mv,

collision
where —mv is the momentum change of body 1. Viewed in
terms of momentum rather than energy, it is clear that

(8)
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F ., 1(?) is responsible for stopping body 1 even though it
does zero work in the process. Similarly, the impulse on
body 2 is I,=+muv.

III. LOOKING INWARD

A bit of reflection shows why Eqs. (4) and (6) are
incompatible. The work-energy theorem holds in pure me-
chanics and applies only to point particles or (impossibly)
ideal rigid bodies. It requires modification in problems
where bulk mechanical (kinetic or potential) energy is
transformed into nonmechanical internal energy associated
with the molecules of macroscopic bodies. This nonme-
chanical energy is present even in objects at rest. It is an
internal energy that is “invisible” from a purely mechani-
cal point of view—a characteristic that makes it somewhat
mysterious, but also quite interesting. If a collision excites
internal degrees of freedom, increasing internal energies,
the work energy theorem must be modified.

We may remove the interpretive problems and inconsis-
tency encountered above by postulating that Eq. (3) be
replaced by

W..=AK+AU Extended work-energy theorem,
9)

in which W, is the net external work done on the body
and AU is the internal energy change of the body. The
extended theorem accounts for the fact that energy trans-
ferred to a body can shown up as translational kinetic
energy and/or in a variety of internal storage modes. Gen-
erally, U includes energies due to bulk rotation and vibra-
tion as well as “hidden” modes that are within the domain
of thermodynamics. Furthermore, Eq. (9) allows pro-
cesses for which bulk kinetic energy is transformed to or
from these internal modes, whether or not any external
work is done. Applying Eq. (9) to the individual bodies in
our mirror-symmetric collision, we find, using (1) and

(6),

W1 =AK + AU =0 (10a)
and

W ot 2=AK,+AU,=0, (10b)
or

AU =AU,=(1/2)mv>. (11)

This conforms with the assumed symmetry and has the
pleasing interpretation that the original kinetic energy of
the two bodies is transformed completely into internal en-
ergy during the collision.

Equation (9) tells us that the work done on body 1
consists of two cancelling terms: AK, = — (1/2)mv? is for-
mally equal to the (negative) pseudowork or center-of-mass
work;>*® and AU;=(1/2)mv* is a (positive) change in
internal energy attributable to deformation during the col-
lision. These two terms have equal magnitudes and oppo-
site algebraic signs. Given this interpretation, it is impor-
tant to avoid a tempting mistake. Neither AK, nor AU, is
attributable to work done by body 2 because that work is
identically zero! Both terms can be attributed to the force
F, on body 1. Prior to the collision, when F., =0,
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Fig. 2. The collision of Fig. 1 depicted in a “u frame” moving with
velocity u (> 0) with respect to the center-of-mass reference frame. Be-
fore the collision the bodies have velocities v—u and — (v+ ). During
the collision the bodies deform and the interface plane moves with con-
stant velocity — u. After the collision the bodies form one object of mass
2m with velocity —u.

there exists no mechanism for converting translational ki-
netic to internal energy. Once contact is made, the nonzero
force F,, | constrains the motion of body 1, decreasing its
momentum and coupling its bulk kinetic and internal en-
ergies. Specifically, work by internal forces transforms bulk
translational kinetic energy into internal energy. All the
work done stopping body 1 is done internally by body 1
molecules on body 1 molecules. A similar statement holds
for body 2.

IV. IS THE INTERNAL ENERGY CHANGE
REALLY “INTERNAL™?

The concepts of internal energy and internal work are
somewhat esoteric and we can benefit from a deeper un-
derstanding of their nature. So far, our analysis has been
confined to the CM frame. The works performed on the
bodies and their translational kinetic energy changes are
different in a frame moving relative to the CM frame. But
what about the changes in the bodies’ internal energies?
We answer this by looking at the same collision in a “u-
frame,” namely, a frame moving with velocity u (parallel
to the line of motion of the bodies) with respect to the CM
frame, as shown in Fig. 2.

Before the collision, the velocities of bodies 1 and 2 in
the u frame are (v—u) and — (v+u), respectively. After
the collision both bodies move with velocity, — u. The cor-
responding initial and final kinetic energies are

Kiy(w)=(1/2ym(v—u)?, Ky(u)=(1/2)m(v+u)?
(12a)

and
Ky f(u) =K, p(u) = (1/2)mi?, (12b)

showing that the individual kinetic energies are frame de-
pendent. The kinetic energy changes are

AK (u)=— (172)mv* 4+ movu

and

(13a)
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AK,(u)=—(1/2)mv*—muou. (13b)

Thus the individual kinetic energy changes are also frame
dependent. Adding the individual kinetic energy changes
we find for the two-body system:

MKy (1) = AK (1) +AK, (1) = — mv?, (14)

showing that the total amount of kinetic energy that “dis-
appears” is the same in any frame. This shows that some
collision properties are internal characteristics of the sys-
tem that are not influenced by the (irrelevant) motion of
the observer.

We now examine how the work on each body varies with
our choice of reference frame. In the u frame, the contact
surface moves at constant velocity, —u. Body 1 experi-
ences a time-dependent force, F,, ;, due to its contact with
body 2. Because of the symmetry constraint, F, acts
parallel or antiparallel to the direction of motion of the
contact surface. Body 2 experiences a force, F,y, 5, from its
contact with body 1, which is at all times equal and oppo-
site to F,, | by Newton’s third law. Accordingly, the works
done on each body by the other are

Wext,l(u)=J Fext,l(t)(_udt)

collision

=—uJ- Fy 1 (D)dt=—ul, (15a)

collision

and

Wext,Z(u)z J Fext,Z(t)(—udt)
collision
=uf Fext,l(t)thu11=_ ext,l(u),
collision

(15b)

where, as before, 7, is the impulse on body 1. Equation
(15b) shows that Eq. (7) holds in any frame, as expected,
because the arguments leading to Eq. (7) are themselves
frame independent. According to Eq. (8), I, equals the
momentum change of body 1; i.e., m(v,y—vy;) =—mv in
any frame. Therefore Egs. (15) reduce to

W ex,1 (u) =mou (16a)
and

Wex2(u) = —mou. (16b)
Finally, we apply Eqgs. (9), (13), and (16) to each body:

W ex,1 () =AK, (1) + AU, () = AU, (u) = (1/2) mv?,

(17a)

and
Wex2(u) =AK,(u) + AU, (u) = AU, (u) = (1/2) mv*.
- (17b)

Equations (17) show that the internal energy changes are
frame independent because the frame transformations for
work and kinetic energy change both entail terms of the
form =*+mou. The result is physically pleasing because it
means that the internal energy changes are really “inter-
nal,” as expected if each body stores an amount of internal
energy that is independent of our reference frame.
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V. RECAPITULATION AND DISCUSSION

Mirror-symmetric, one-dimensional, completely inelas-
tic collisions can serve as a natural bridge between classical
mechanics and thermodynamics. The failure of the simple
work-energy theorem makes the internal energy concept a
compelling necessity, and Galilean transformations to
frames other than the CM frame illustrate that the internal
energy change is a frame-independent quantity. Our major
findings for this simple collision, together with generaliza-
tions obtained in the Appendix can be encapsulated in five
major results.

Result 1. In a mirror-symmetric, completely inelastic,
one-dimensional collision [see Fig. (1)], for which interac-
tions are solely through contact forces, each body stops the
other while doing zero work on it. The force on each body
reduces its momentum but does zero work because each
force is perpendicular to any displacements that occur. In-
ternal work, via internal forces, converts each object’s bulk
translational energy into internal energy.

Result 2. For the mirror-symmetric collision, the work
done on each body depends upon the observer’s reference
frame. The mirror symmetry in the CM frame is broken in
frames with #540 and by varying u, the observed work
done by either body on the other can be made negative or
positive, with the zero value occurring only in the CM
frame. Observers in different reference frames see different
paths of motion and frame dependence corresponds to path
dependence, a well-known characteristic of thermodynamic
work.

Resulit 3. For the mirror-symmetric collision, three char-
acteristic energy changes are independent of the observer’s
reference frame: the internal energy changes of each col-
liding body and the translational kinetic energy change of
the two-body system. Frame invariance reflects the inher-
ently i/nternal nature of internal energy and facilitates an
effective introduction of this thermodynamic concept as an
outgrowth of classical mechanics.

Result 4. In the Appendix, we show that analogs of re-
sults 1-3 hold for general collisions between two arbitrary
bodies interacting via contact forces, but not confined to
one dimension, and with arbitrary inelasticity. Generally,
the works on bodies 1 and 2 satisfy the condition W, ;=
— Wex2 in any inertial frame and, if the collision alters the
momenta of the two bodies, the two works vanish in a
Jamily of reference frames. The three frame-invariant en-
ergy changes in result 3 are invariant also in the general
case.

Result 5. For inelastic collisions, dissipation entails a
transformation of bulk translational energy into the inter-
nal energies of the bodies; i.e., positive internal energy
changes occur for both bodies. This generally leads to tem-
perature increases of the bodies that can induce heat trans-
fers. It is helpful to envision an “adiabatic” collision, for
which internal energies increase with zero heat transfer,
followed by secondary heat transfers to the environment.
Although oversimplified, this view helps sort out the im-
portant difference between internal energy increase and
heat transfer, which are commonly confused with one an-
other.

We now discuss the major results further. For our
mirror-symmetric collision, the physical origin of the inter-
nal energy changes seems very different in different frames.
For example, if u=(1/2)v, Egs. (13) and (16) imply
AK (4)=0 and W, (u)=AU,=(1/2)mv*, suggesting
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that AU, is generated via external work by body 2 on body
1. In contrast, if u=—(1/2)v, then AK,(u)=0, AK (u)
= —mv?, and We1(u)=—~(1/ 2)mv?, suggesting that the
positive work needed to generate AU, >0 is not attribut-
able to body 2. Such frame-dependent idiosyncrasies can be
circumvented using the frame-invariant quantity
Wext = Wepy—AK, an external “work” defined using dis-
placements measured relative to the system’s CM.>’ Then
Eq. (9) becomes the frame-invariant equation, w.,=AU.
Choosing the system to be body 1 in our mirror symmetric
collision, and using the #=0 frame for convenience,
Wei1=0 and we, =—AK ()= (1/2)m’=AU,. Al-
though Newton’s laws do not hold in the (noninertial)
frame attached to the CM of body 1, w,,  is, formally, the
external work done on body 1 in this frame.

If the mirror symmetry is broken—e.g., when the two
bodies have different masses and elastic properties, result 4
assures that a zero-work frame exists. A simple example,
for which the collision forces are purely repulsive and the
contact surface is a plane perpendicular to the direction of
motion, illustrates how this might occur. There are u
frames, moving parallel to the collision dimension, in
which the contact surface experiences both negative and
positive displacements during the collision; i.e., both posi-
tive and negative work is done on each body during the
collision. For a carefully chosen value of u, W,,, ;=0. Be-
cause W, = — W, , in any frame (see the Appendix), it
is also true that W, ,=0, completing this example.

The frame-invariant equation w,,, =AU can be general-
ized to include heat transfer, which we view as a form of
“invisible” external work, Q at a surface:

wext"{'Q:AU.

This is an invariant form® of the first law of thermodynam-
ics.> Thus our head-on inelastic collision, along with con-
siderations of frame invariance and symmetry, creates a
setting that leads naturally to the first law of thermody-
namics.

The postulated internal energy function U, is fundamen-
tally different from the quantities in the original work-
energy theorem because it Aides information. When bulk
kinetic energy of a body is transformed into internal en-
ergy, macroscopically observable energy gets distributed
among molecules in a way that is unknowable to a macro-
scopic observer. A partially inelastic collision loses less
information than a completely inelastic one, and a fully
elastic collision loses zero information. Information loss
can be related to dissipation via entropy and the second
law of thermodynamics. Rothstein®® summed up the first
and second laws of thermodynamics via two simple state-
ments that are apropos here: (a) the conservation of en-
ergy, and (b) the existence of modes of energy transfer
incapable of mechanical description. Our head-on collision
provides an example of both, with (b) helping to explain
the phenomenon of irreversible dissipation.

The many efforts in the literature devoted to clarifying
work, heat, and energy in general illustrate that these top-
ics are important but unfortunately unsettled for many
physics teachers. The symmetric head-on collision used
here has provided a new approach and provocative results
that are potentially useful in clarifying work, introducing
the concept of internal energy, and sharpening the distinc-
tion between internal energy and heat. The picture devel-
oped also explains in part the meaning of dissipation for

(18)
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inelastic collisions. At the very least, this approach illus-
trates the incompleteness and inadequacy of the simple
statement, “the kinetic energy lost in an inelastic collision
gets dissipated as heat.” The latter sentence, though not
strictly wrong, misses a host of interesting and potentially
valuable physics. That physics is the essence of this article.

APPENDIX: A GENERALIZED TWO-BODY
COLLISION

In the body of this paper we analyzed a highly symmetric
collision to focus attention on the fact that a purely me-
chanical analysis is inadequate for inelastic collisions. We
showed that internal energy changes are frame-
independent, and, therefore, fruly “internal.” Here we
show how the arguments for that simple, pedagogically
attractive, case can be generalized.

Consider the general case of a collision between bodies
with masses m, and m,. The collision begins at the moment
of first contact, is mediated by interaction forces across a
time-varying contact surface, and ends at time 7, the mo-
ment of last contact or, in the case of bodies that stick
together, the time at which an arbitrary end-of-collision
criterion is satisfied. We adopt a vector-oriented analysis,
carried out in an arbitrary reference frame moving with
velocity u relative to the CM frame. The “velocity” of each
body is the velocity of its own center-of-mass relative to the
chosen frame of reference. Frame-dependent quantities are
denoted by the argument (u); the CM frame values of such
quantities are labeled with the argument (0). The initial
and final velocities of the bodies, vy, vy, vi5, and v,5, and
the frame-independent relative velocities, w; and w , satisfy
the identities:

Vis(0) =v15(0) —u, v (u) =v,(0) —u, (Ala)
and
w=v(u) —vy(u) =v(0) — vy (0), for s=if.
(Alb)
The frame-independent change in the relative velocity is
Aw=w,—w, (Alc)

In the CM frame, the total momentum is zero; i.e.,
mv;,(0) +myvy (0) =0 for s=i,f. Introducing the re-
duced mass of the system, p=mm,/(m,+m,), the zero
momentum condition and Egs. (A1) imply the following
identities:

vl.\'(o): (,u'/ml)w.w (Aza)
Voi(0) = — (u/my)w,, for s=if, (A2b)
AK](“)E%ml{[Ulf(u)]z—[Uli(“)]z}
—1ﬂi(w2—w2)— u-Aw (A3a)
_2 n, f i H ?
AKy(u) =3my{ [vy () 12— [05:(w) 1%}
2
=5 %;(w?—wf)+yu-Aw, (A3b)
and
AK,y= K, (u) +AK, () = (wi—wj). (A3c)
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Fig. 3. The contact surface between two bodies during a collision. Here,
doy is an element of the surface of body 1 that lies in the time-varying
surface of contact o(¢). dF, is the force exerted on body 1 by body 2
across doy and v, is the instantaneous velocity of the surface element do.

Equations (A3) show that AK, is frame-independent
even though the individual kinetic energy changes AK,(u)
and AK,(u) are not. With some rearranging, Egs. (A3a,b)
can be rewritten as

AK,(u) = (u/m)AKy+ (—1) uu-Aw, for r=1,2.
(A4)

Notice that the frame-dependences of AK,(u) and AK,(u)
are explicitly contained in the equal magnitude, but oppo-
sitely signed, final terms of Egs. (A4).

Turning now to the works done on each body, we reit-
erate our assumption that the interaction between the two
bodies occurs via contact forces. This implies that the in-
teracting surface elements of each system experience iden-
tical displacements during the collision. As illustrated in
Fig. 3, we consider a small surface element do; of body 1
that lies in the time-varying surface of contact o(t) be-
tween the two bodies. The force exerted on body 1 by body
2 across do, is dF, and the displacement of do, during the
period dt is ds(u) =v, (n)dt=[v, (0) —u]dt. To find the
total work done on body 1 we integrate over the duration
of the collision and over all elements of the contact surface
to obtain

W)= ||

0 a(t)

dF;- [v,,l(())—u]dt

(A5a)

The second term follows from the fact that mAv,=u Aw
according to Egs. (Alc) and (A2). Similar analysis for
body 2 gives

= ext,l(o) —pu- Aw.

Wext,z(“) = Wext,Z(o) +pu- Aw. (ASb)

Now we are in a position to assess the frame indepen-
dence of the internal energy changes of bodies 1 and 2.
Inserting Eqs. (A4) and (AS) into the extended work-
energy theorem, Eq. (9), for each body gives
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AU (u) = Weg 1(0) — (u/my ) AK

and (A6)

AUz(ll) = Wext,Z(o) - (#/MZ)AKsyS'

Because the right sides of Eqs. (A6) are independent of the
frame velocity u, AU|, and AU, are frame independent.

Conservation of energy for the two body system implies
that AK,,+AU,+AU,=0. Therefore, adding together
Egs. (A6) we find that

Wext,Z(o) = Wext,l (0), (A7)
which, together with Eqs. (AS), establishes that W, ,(u)
= — Wey,1(u) for any value of u.

Because W, (0) defies evaluation without complete
specification of the collision details, we will be content to
treat it as a fundamental parameter of the collision. Equa-
tions (A4)-(A7) show that a knowledge of three such
fundamental and frame-independent parameters—Aw,
AK,,, and W, (0)—suffice to determine the changes in
the kinetic and internal energies and the works done on
both bodies in any specified reference frame.

Finally, we observe that even in the most general two-
body collision, as long as the momenta of the bodies are
altered, reference frames can always be found in which the
work done by each body on the other during the collision
is zero. Equations (AS5) and (A7) show that this is the
case for any reference frame with u=u* such that

u* - Aw=p "W, 1(0). (A8)
Equation (A8) specifies a family of reference frames (rel-
ative to the CM frame), each member of which has the
same velocity component, u¥; =W, (0)/(u|Aw|), par-
allel to Aw.
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