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Energy is a critical concept in physics problem-
solving, but is often a major source of 
confusion for students if the presentation 

is not carefully crafted by the instructor or the 
textbook. In the first three articles1-3 in this series 
we discussed several issues related to the teaching of 
energy concepts. We have saved a major single issue 
for this article: the presentation of energy by means 
of a global approach. Energy, energy transfers, and 
energy transformations are at the heart of every process 
that occurs in physics, chemistry, biology, astronomy, 
and geology. Consequently, it is useful and highly 
instructive to discuss this global nature of energy from 
the very beginning, when energy is first introduced in 
mechanics.

A Typical Traditional Approach
Unfortunately, energy is often presented in 

textbooks and classrooms in a disjointed manner 
such that students may believe that there are several 
fundamental energy equations. Despite having 
multiple energy equations available, however, students 
taught in this fashion cannot write simple energy 
equations that describe the operation of everyday 
systems such as their stereo system, a lawn mower, or a 
light bulb. With the approach described in this article, 
students have one fundamental energy equation and 
can write appropriate energy equations for these 
sample systems, as well as many more.

A typical traditional approach introduces the work-
kinetic energy theorem when discussing moving  
objects. Things quickly become more complicated, 

however, when friction is introduced. As discussed in 
the first article1 in this series, we cannot calculate the 
work done by friction because the displacement of 
the object is not the same as the displacements of the 
many points of application of the friction force, so the 
work-kinetic energy theorem is of no use. Deformable 
and rotating objects are often avoided in the class-
room or textbook because they offer complications 
that cannot be handled by a traditional approach to 
work and the work-kinetic energy theorem. 

When potential energy is discussed, the conserva-
tion of mechanical energy equation is introduced.  
Because systems are often not emphasized in a tradi-
tional approach, as discussed in the second article2 in 
this series, students may believe that the conservation 
of mechanical energy equation is separate from the 
work-kinetic energy theorem—another equation that 
involves energy, but seemingly a separate idea.

Finally, when thermodynamics is discussed, 
internal energy and heat are introduced. At that time, 
a third apparently disconnected energy equation is 
introduced—the first law of thermodynamics.

This disjointed approach is reminiscent of the 
historical growth of thermodynamics as a separate 
topic from mechanics. These areas of physics were 
unified a long time ago. It’s time we teach a unified, 
global approach in the classroom!

The Global Approach
It is my position in this article that there is only 

one fundamental energy equation and that all other 
energy equations are special cases. The fundamental 
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equation is called the conservation of energy equation4 

or the continuity equation for energy, both of which can 
be abbreviated as CEE:

D Esystem =  T ,			                   (1)

where T represents the amount of energy transferred 
(T for transfer) across the boundary of the identified 
system by a given mechanism. The general conceptu-
al basis of the equation is this: the only way the total 
energy Esystem of a system can change is if energy 
crosses the system boundary by one or more mecha-
nisms described by T. The mathematical basis is this: 
the total change in energy of the system during some 
time interval is exactly equal to the net amount of 
energy crossing the system boundary. The summa-
tion sign indicates that energy may cross the bound-
ary by several methods. It is instructive to compare 
this to a student’s bank account—the balance does 
not change if there are no transfers into or out of the 
bank system. When there are transfers in the form of 
deposits, withdrawals, fees, interest, and checks writ-
ten, however, the balance changes by exactly the net 
amount of money transferred by these processes.

In my teaching of classical physics, the expanded 
version of Eq. (1) is expressed as follows:5

	 DK + DU + DEint 

	   = W + Q + TMT + TMW + TER + TET .  	(2)

The left-hand side of this equation shows three ways 
of storing energy in the system: kinetic energy K, 
potential energy U, and internal energy6 Eint. The 
change in the total energy stored in the system is 
found by adding the three individual changes for 
these types of energy storage.  

The kinetic energy K on the left side of the CEE, 
Eq. (2), is the sum of the translational kinetic energy 
of the center of mass of the system, rotational kinetic 
energy around the center of mass of the system, and 
any kinetic energy associated with radial motions of 
the members of the system with respect to the center 
of mass. The potential energy U includes all types, 
such as gravitational, electric, and elastic. In addition, 
I include here chemical potential energy of fuel or 
explosives, and biological potential energy resulting 

from eaten meals. The internal energy Eint includes 
the energy associated with randomized motion of 
molecules, measured by temperature, and bond 
energies between molecules, associated with the phase 
(solid, liquid, or gas) of the system.

On the right side of the CEE is the total amount 
of energy that crosses the boundary of the system, 
expressed as the sum of the energy transferred by six 
common processes:

W: work done on the system by external forces whose 
points of application move through displacements 

Q: energy transferred across the boundary of the 
system by heat due to a temperature difference be-
tween the system and its environment

TMT: energy transferred across the boundary of the 
system by matter transfer (such as transferring a 
fuel into a tank)

TMW: energy transferred across the boundary of a 
system by mechanical waves such as sound waves or 
seismic waves

TER: energy transferred across the boundary of a 
system by electromagnetic radiation such as light or 
microwaves

TET: energy transferred across the boundary of a 
system by electrical transmission from a battery or 
other electrical source

It is instructive to spend time discussing this 
equation and its individual terms when energy is 
first introduced. Students are familiar enough from 
everyday life with the six types of energy transfer 
in the equation that they can quickly understand 
the nature of energy transfers and the meaning of 
the equation. In my experience, early in the course, 
many students begin with the full Eq. (2) and cross 
off terms that do not apply to a given situation. After 
gaining more familiarity and experience with the 
approach, they often begin with Eq. (1) and build the 
appropriate equation by listing just those terms that 
are needed to analyze the situation.

In using the CEE, it is important to identify 
the system of interest as well as the time interval of 
interest. For some systems, different choices of time 
intervals may result in a different CEE. For example, 
if the system is the set of coils in a toaster, there is 
a change in the internal energy Eint during a time 
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interval just after the toaster is turned on, but no 
such change for a later time interval during which the 
temperature has stabilized.

The discussion of the various means of energy 
transfer in association with the conservation of en-
ergy equation addresses another weakness of tradi-
tional textbook7 and classroom discussions related 
to power. Because work is often the only means of 
energy transfer to be discussed in a traditional cover-
age of mechanics, it is often stated that “power is the 
rate at which work is done.” This is an incomplete 
statement and will leave students wondering about 
power ratings on their light bulbs and stereo systems.  
When all forms of energy transfer are discussed in a 
global approach to energy, however, the correct state-
ment about power can be made:8 “power is the rate 
at which energy is transferred across the boundary of 
the system.” Students taught by this approach will un-
derstand what a 60-watt light bulb is—as well as what 
the lumen rating on the light bulb package represents.  
They will also understand sound power from their ste-
reo speakers and light power coming from the Sun.

Arons9 supports the view that a global approach to 
energy for all processes, as represented by the CEE, 
is advisable: “It seems a shame . . . to give students so 
narrow and restricted a view of the concept of energy 
and its conservation . . . . Furthermore, recognizing 
what happens phenomenologically in everyday 
experiences such as running, jumping, accelerating a 
car, and confronting frictional effects, gives personal 
relevance, richness, and greater meaning to the 
physical concepts not attainable in the restricted 
development.”

As discussed in the third article3 in this series, it is 
important to distinguish between transfers of energy 
across the boundary of the system and transforma-
tions of energy within the system. I identify three pri-
mary types of transformation mechanisms: (1) work, 
(2) chemical reactions, and (3) nuclear reactions. The 
work in this context is not the W term on the right- 
hand side of the CEE, Eq. (2)—work in that equation 
is energy transfer across the boundary of the system. 
Work as a transformation mechanism is internal work 
as discussed in the first article1 in this series.  It is work 
done by one system component on another, causing a 
transformation of energy. For example, within a ball-
Earth system, work done by the gravitational force be-

tween the Earth and the ball causes a transformation 
from gravitational potential energy to kinetic energy.

Chemical reactions cause transformation of poten-
tial energy in a system of chemicals to other forms, 
such as internal energy and possibly kinetic energy of 
flying pieces in an explosion. Nuclear reactions trans-
form energy stored in the nucleus into kinetic energy 
of outgoing particles and internal energy of material 
surrounding the reaction. In general, transformation of 
energy causes a conversion of one type of storage of energy 
in the system into another type.

It is also possible to discuss transfers of energy 
within the system that redistribute the energy but 
do not change the total energy in the system. For 
example, a system may include a hot object and a cold 
object. In this case, there may be a transfer of energy 
by heat and electromagnetic radiation from the hot 
object to the cold object. As long as energy is only 
transferring between members of the system, this 
is an isolated system and the right-hand side of the 
CEE is zero. The internal transfers are redistributing 
the energy so that the cold object is gaining internal 
energy while the hot object is losing internal energy, 
but the total energy of the system remains constant.  
A process such as this would not be evident in the 
conservation of energy equation for the system, but 
the process might be described by other principles, 
such as requiring thermal equilibrium for the system 
components. Transfers of energy within the system 
often do not cause a conversion of one type of storage of 
energy in the system into another type—the energy is 
redistributed among the system components but remains 
in the same form.

Categorize the System
The process of categorization of the system was 

discussed in the second article2 in the series. In that 
discussion, we identified a non-isolated system as one 
for which there are transfers of energy across the 
boundary of the system by at least one mechanism. 
In this case, the CEE for the system is represented by 
Eq. (1). An isolated system is one for which there are no 
transfers of energy across the boundary of the system 
by any mechanism. The CEE for the system in this 
case reduces to the special form,

  DEsystem  =  0 .				    (3)
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In a process involving an isolated system, only trans-
formations of energy occur, such that the system 
energy remains fixed. (There may also be transfers of 
energy within the system, but these will generally not 
affect the CEE.)

Another categorization possibility that was not 
discussed previously is the non-isolated system in steady 
state. This system is described by a CEE as follows:

  0  =   T . 					     (4)

In this system, energy is transferring across the 
boundary of the system, but the rate of transfer of 
energy into the system balances the rate of transfer 
out of the system, so that the total energy in the 
system remains fixed. The Earth is an example of a 
non-isolated system that is approximately in steady 
state. The rate of energy transferring into the system 
by visible light from the Sun is balanced with the 
rate of energy transfer out of the system by infrared 
radiation. The global warming problem is related to 
the fact that the Earth is not quite in steady state.  
Because of the capturing of infrared radiation by 
greenhouse gases, the surface temperature of the 
Earth is slowly increasing.

Mungan10 provides a problem in which a block 
slides over a table that is free to move in a chamber 
designed to allow no energy to enter or leave the 
system. Figure 1 shows this situation. At time t = 
0, the table is at rest and the block is sliding with 
speed vi. Eventually, the block and table move with a 
common speed vf .

Mungan’s discussion of this problem is designed 
to show that it can be solved without introducing the 
concepts of work or heat. Using the global approach 
to energy, the student would not think of introducing 
work or heat as energy transfers across the system 
boundary because the system of the block and table 
is isolated. Work internal to the system2 does indeed 
occur and contributes to changes in the speeds of 
the block and table. Additionally, the system gains 
internal energy due to the friction force between the 
block and the table,1 which is distributed between the 
block and the table by heat. Therefore, work and heat 
are occurring within the system, but that is not what 
is on the right-hand side of the CEE. The terms W 
and Q that appear in the CEE represent transfers of 
energy across the boundary of the system and are zero 
for this situation. The work done within the system 
is a transformation process that converts kinetic 
energy to internal energy, and the process of heat that 
occurs simply distributes internal energy between the 
components of the system.

Mungan also notes that it is tempting [for students] 
to identify W with DK and Q with DU. From the 
global energy approach, the student will not be 
tempted to make this identification because he or she 
has been taught (and hopefully has learned) that any 
type of energy transfer can cause a change in any type 
of energy storage.  

Reducing the Conservation of 
Energy Equation

Let us consider three special cases to see how to 
use the conservation of energy equation in practice.  
First, suppose the system is a single object that can 
be modeled as a particle and the time interval is one 
during which a single force acts on the object in 
empty space. Because of the influence of the external 
force, this system is non-isolated. The only type of 
energy that can change in the system is kinetic energy, 
and the only way energy is transferring into the system 
is by work. Equation (2) in this case reduces to 

DK = W ,    					     (5)

which is the work-kinetic energy theorem. Therefore, 
this equation that is so often interpreted by students 
as fundamental is seen to be a special case of the gen-

isolated system boundary

table

block

M
m

vi

Fig. 1. A block of mass m is set sliding across a table of 
mass M. The table is free to move on a frictionless sur-
face and the system of the block and table is isolated.
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eral conservation of energy equation.
Next, consider an arbitrary system that is isolated 

so that there are no transfers of energy into or out 
of the system. Suppose also that no nonconservative 
forces act within the system. Then there is no 
conversion of mechanical energy to internal energy 
and Eq. (2) becomes

DK + DU  =  0     →    Kf  + Uf   =  Ki + Ui ,           (6)

which is the familiar expression for conservation 
of mechanical energy for an isolated system. For 
example, for a falling ball, the system is chosen as 
the ball and the Earth and the potential energy is 
gravitational.

Finally, consider a system of an ideal gas in a 
stationary cylinder. The piston in the cylinder can 
be moved so that work can be done on the gas. The 
walls of the cylinder are thermally conducting, so that 
energy can enter or leave the system by heat. In this 
case, Eq. (2) becomes

DEint  =  W + Q , 			                   (7)

which is the first law of thermodynamics. Therefore, 
all three of the “fundamental” energy equations 
mentioned earlier in this discussion can be gener-
ated from the true fundamental energy equation, the 
CEE.

As further evidence of the generality of the 
conservation of energy equation, consider the 
photoelectric effect. In this process, a photon strikes 
a clean metal surface and ejects an electron. Identify 
the system as the metal and the single electron that is 
ejected. This system is non-isolated because energy 
crosses the boundary of the system by electromagnetic 
radiation in the form of a photon. In this case, Eq. (2) 
reduces to

DK + DU  =  TER ,			                   (8)

where TER is the transfer of energy into the system 
by the photon. The potential energy U is that of the 
metal-electron system. We identify the configura-
tion of the electron outside the metal as having zero 
potential energy. When the electron is inside the 
metal, it is bound within the metal, which we can 

model by identifying the potential energy of the sys-
tem as –U0. Therefore the change in potential energy 
of the system is DU = 0 – (–U0) = U0.

The kinetic energy K of the system is that of the 
ejected electron. We model its kinetic energy as zero 
when it is in the metal. (The single electron’s kinetic 
energy makes a negligible contribution to the metal’s 
internal energy when it is in the metal. We ignore this 
very small correction.) Calling the kinetic energy of 
the electron when it is ejected K, the change in kinetic 
energy of the system is DK = K – 0 = K. Therefore, Eq. 
(8) for this process becomes

K + U0  =  TER . 			                   (9)

If we now recognize the energy transferred into the 
system by the photon as TER = hf, where h is Planck’s 
constant and f is the frequency associated with the 
photon, we have

K + U0  =  hf ,  			                 (10)

which is Einstein’s equation for the photoelectric 
effect, with U0 identified as the work function of the 
metal and K as the maximum kinetic energy of the 
ejected electron.

Let us now address the situations mentioned earlier 
that the student could not analyze after traditional 
instruction in energy. Consider a stereo system as the 
system of interest and choose a time interval from just 
before we turn it on to an instant after it has been on 
for a couple of minutes. The system is non-isolated.  
The appropriate reduction of Eq. (2) in this case is

DEint  =  Q + TMW + TER + TET .     	               (11)

The change in internal energy Eint on the left is sig-
naled by the increasing temperature of the system as 
it operates from a cold start. Energy leaves the warm 
stereo by heat (Q) into the cool air and leaves the 
system from the speakers by sound waves (TMW).  
Energy TER enters the system by electromagnetic 
radiation due to the input radio signal and leaves the 
system from various display lights. The largest input 
energy is by electrical transmission (TET) through 
the power cord.

Now consider a lawn mower as a system and the 
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time interval to be from just before it is filled with 
gasoline to an instant after it has been operating for 
a few minutes. This system is also non-isolated. The 
appropriate reduction of Eq. (2) is

DK + DU + DEint = W + Q + TMT + TMW .      (12)

The kinetic energy K corresponds to the rotating 
blade and motor parts and has increased because the 
mower was not operating at the beginning of the 
time interval. The potential energy U of the system 
is associated with the gasoline in the tank and has 
increased due to the filling of the tank. Because the 
mower is warming up, there is a change in internal 
energy Eint. The work W is done by the operator 
pulling the starter cord. Energy Q leaves by heat into 
the cool air, while other energy leaves the system by 
sound waves (TMW). The term TMT corresponds to 
the process of filling the tank with gasoline.

Finally, let’s address a light bulb filled with a 
gas. We identify the filament of the light bulb as 
the system and the time interval as a one-minute 
interval long after the bulb has been turned on. The 
appropriate reduction of Eq. (2) is

0  =  Q + TER + TET . 			                 (13)

The filament is a non-isolated system in steady state.  
In this expression, energy TET enters the bulb fila-
ment by electrical transmission. Energy leaves the 
filament by heat (Q) into the gas in the bulb and by 
infrared and visible light (TER). If the light bulb is 
evacuated, the Q term vanishes.  

Problems
Let us now address the two problems raised in the 

second article in this series.2 

Problem 1
A ball of mass m is dropped from a height h above 
the surface of the Earth (Fig. 2) and air resistance is 
neglected. With what speed does it strike the Earth?

Choosing the system as the ball and the Earth and 
the time interval to be from when the ball is dropped 
to an instant just before it strikes the ground, Eq. (2) 
becomes

DK + DUg  =  0.  (14)

We define the configu-
ration of the system 
when the ball is at the 
ground to have zero 
gravitational potential 
energy. Therefore,
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This is clearly a simple problem; it is presented for 
purposes of comparison to Problem 2.

Problem 2
Each of four small spheres has mass m. Between 
each pair of spheres is a compressed spring, with the 
springs forming a square of side h (Fig. 3). The springs 
are identical, have force constant k and negligible 
mass, and are not fastened to the spheres. The natural 
length of each spring is L. The spheres are tied with 
light strings that pass through the axes of the four 
springs. The entire apparatus is in a gravity-free region 
of space. All four strings are simultaneously cut so that 
the spheres are pushed away by the springs and fly 
away. With what speed are the spheres traveling when 
they are no longer in contact with the springs?

We choose the system to be the four spheres and the 
four springs. The time interval is from before the 
strings are cut until any instant after the spheres lose 
contact with the springs. Eq. (2) becomes

DK + DUs  =  0. 			                 (16)

The only difference between this problem and 
Problem 1 is that we need to consider the kinetic 
energy of four objects and the potential energy of 
four springs. Because of the symmetry of the situ-
ation, we know that all four spheres will have the 
same speed after the strings are cut. Because the 

Fig. 2. A ball of mass m is dropped 
from a height h. How fast is it mov-
ing when it strikes the Earth?
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springs are identical, they will each store the same 
potential energy before the strings are cut. We define 
the configuration of the system when all the springs 
are uncompressed to have zero elastic potential ener-
gy. Therefore, 
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Notice that the general approach to both problems is 
the same. A student who has been taught the global 
approach to energy is undaunted by the seeming 
complexity of the second problem. Furthermore, that 
student will be comfortable later on when he or she 
sees the following problem.

Problem 3
Each of four small spheres has mass m and electric 
charge q. The spheres are tied with insulating strings 
so they form a square of side h in a gravity-free 
region. All four strings are simultaneously cut so 
that the spheres fly away. With what speed are the 
spheres traveling when they are infinitely far apart?

The student who has learned the global approach 
will recognize this as the same form of problem as 
Problems 1 and 2 and that it would be handled in 
exactly the same way. He or she will also recognize 

an important difference in this problem because of 
the nature of the electric force in the four-object 
arrangement compared to the spring force: We must 
add up electric potential energies for all binary pairs 
of interacting particles in the system:

∆K + ∆Ue  =  0      			                 (18)
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Conclusion
We reiterate the importance of energy in under-

standing physical processes and solving physics prob-
lems. Because of this importance, we should take the 
time early in the course to share with students the 
global nature of energy and a true fundamental energy 
equation that can be used in all situations. Further-
more, we should define work carefully, emphasize the 
importance of identifying the system, and make sure 
we observe careful use of the language. With these  
efforts on our parts, we should have students at the 
end of our courses who truly understand energy and 
can readily handle analyses of situations involving 
energy and energy transfers. In the final installment 
in this series, we show how to use the global approach 
to energy to solve several problems, including the two 
problems suggested by Mungan11 that were discussed 
in the second article2 in the series.
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